Skip to main content

Advertisement

Log in

Is an MRI-derived anatomical measure of dementia risk also a measure of brain aging?

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Machine learning methods have been applied to estimate measures of brain aging from neuroimages. However, only rarely have these measures been examined in the context of biologic age. Here, we investigated associations of an MRI-based measure of dementia risk, the Alzheimer’s disease pattern similarity (AD-PS) scores, with measures used to calculate biological age. Participants were those from visit 5 of the Atherosclerosis Risk in Communities Study with cognitive status adjudication, proteomic data, and AD-PS scores available. The AD-PS score estimation is based on previously reported machine learning methods. We evaluated associations of the AD-PS score with all-cause mortality. Sensitivity analyses using only cognitively normal (CN) individuals were performed treating CNS-related causes of death as competing risk. AD-PS score was examined in association with 32 proteins measured, using a Somalogic platform, previously reported to be associated with age. Finally, associations with a deficit accumulation index (DAI) based on a count of 38 health conditions were investigated. All analyses were adjusted for age, race, sex, education, smoking, hypertension, and diabetes. The AD-PS score was significantly associated with all-cause mortality and with levels of 9 of the 32 proteins. Growth/differentiation factor 15 (GDF-15) and pleiotrophin remained significant after accounting for multiple-testing and when restricting the analysis to CN participants. A linear regression model showed a significant association between DAI and AD-PS scores overall. While the AD-PS scores were created as a measure of dementia risk, our analyses suggest that they could also be capturing brain aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Higgins-Chen AT, Thrush KL, Levine ME. Aging biomarkers and the brain. Semin Cell Dev Biol. 2021;116:180–93.

    Article  CAS  Google Scholar 

  2. Casanova R, Hsu FC, Sink KM, Rapp SR, Williamson JD, Resnick SM, Espeland MA, Alzheimer’s Disease Neuroimaging I. Alzheimer’s disease risk assessment using large-scale machine learning methods. PLoS ONE. 2013;8: e77949.

    Article  CAS  Google Scholar 

  3. Espeland MA, Chen JC, Weitlauf J, Hayden KM, Rapp SR, Resnick SM, Garcia L, Cannell B, Baker LD, Sachs BC, Tindle HA, Wallace R, Casanova R, Women’s Health Initiative Memory Study Magnetic Resonance Imaging Study G. Trajectories of relative performance with 2 measures of global cognitive function. J Am Geriatr Soc. 2018;66:1575–80.

    Article  Google Scholar 

  4. Espeland MA, Luchsinger JA, Neiberg RH, Carmichael O, Laurienti PJ, Pi-Sunyer X, Wing RR, Cook D, Horton E, Casanova R, Erickson K, Nick Bryan R, Action for Health in Diabetes Brain Magnetic Resonance Imaging Research G. Long term effect of intensive lifestyle intervention on cerebral blood flow. J Am Geriatr Soc. 2018;66:120–6.

    Article  Google Scholar 

  5. Younan D, Petkus AJ, Widaman KF, Wang X, Casanova R, Espeland MA, Gatz M, Henderson VW, Manson JE, Rapp SR, Sachs BC, Serre ML, Gaussoin SA, Barnard R, Saldana S, Vizuete W, Beavers DP, Salinas JA, Chui HC, Resnick SM, Shumaker SA, Chen JC. Particulate matter and episodic memory decline mediated by early neuroanatomic biomarkers of Alzheimer’s disease. Brain. 2020;143:289–302.

    Article  Google Scholar 

  6. Younan D, Wang X, Casanova R, Barnard R, Gaussoin SA, Saldana S, Petkus AJ, Beavers DP, Resnick SM, Manson JE, Serre ML, Vizuete W, Henderson VW, Sachs BC, Salinas JA, Gatz M, Espeland MA, Chui HC, Shumaker SA, Rapp SR, Chen JC PM2.5 associated with gray matter atrophy reflecting increased Alzheimers risk in older women. Neurology. 2020.

  7. Casanova R, Hsu FC, Barnard RT, Anderson AM, Talluri R, Whitlow CT, Hughes TM, Griswold M, Hayden KM, Gottesman RF, Wagenknecht LE. Comparing data-driven and hypothesis-driven MRI-based predictors of cognitive impairment in individuals from the Atherosclerosis Risk in Communities (ARIC) study. Alzheimers Dement. 2022;18:561–71.

    Article  CAS  Google Scholar 

  8. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, Franceschi C, Lithgow GJ, Morimoto RI, Pessin JE, Rando TA, Richardson A, Schadt EE, Wyss-Coray T, Sierra F. Geroscience: linking aging to chronic disease. Cell. 2014;159:709–13.

    Article  CAS  Google Scholar 

  9. Kohanski RA, Deeks SG, Gravekamp C, Halter JB, High K, Hurria A, Fuldner R, Green P, Huebner R, Macchiarini F, Sierra F. Reverse geroscience: how does exposure to early diseases accelerate the age-related decline in health? Ann N Y Acad Sci. 2016;1386:30–44.

    Article  Google Scholar 

  10. Justice JN, Ferrucci L, Newman AB, Aroda VR, Bahnson JL, Divers J, Espeland MA, Marcovina S, Pollak MN, Kritchevsky SB, Barzilai N, Kuchel GA. A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the TAME Biomarkers Workgroup. Geroscience. 2018;40:419–36.

    Article  CAS  Google Scholar 

  11. LeBrasseur NK, de Cabo R, Fielding R, Ferrucci L, Rodriguez-Manas L, Vina J, Vellas B. Identifying biomarkers for biological age: geroscience and the ICFSR task force. J Frailty Aging. 2021;10:196–201.

    CAS  Google Scholar 

  12. Hoffman JM, Hernandez CM, Hernandez AR, Bizon JL, Burke SN, Carter CS, Buford TW. Bridging the gap: a geroscience primer for neuroscientists with potential collaborative applications. J Gerontol A Biol Sci Med Sci. 2021.

  13. Hernandez CM, Hernandez AR, Hoffman JM, King PH, McMahon LL, Buford TW, Carter C, Bizon JL, Burke SN. A neuroscience primer for integrating geroscience with the neurobiology of aging. J Gerontol A Biol Sci Med Sci. 2021.

  14. Franke K, Gaser C. Ten years of BrainAGE as a neuroimaging biomarker of brain aging: what insights have we gained? Front Neurol. 2019;10:789 (PMID: 31474922).

    Article  Google Scholar 

  15. Cole JH. Neuroimaging-derived brain-age: an ageing biomarker? Aging (Albany NY). 2017;9:1861–2.

    Article  Google Scholar 

  16. Cole JH, Franke K. Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci. 2017;40:681–90 (PMID: 29074032).

    Article  CAS  Google Scholar 

  17. Ning K, Zhao L, Matloff W, Sun F, Toga AW. Association of relative brain age with tobacco smoking, alcohol consumption, and genetic variants. Sci Rep. 2020;10:10 (PMID: 32001736).

    Article  CAS  Google Scholar 

  18. Gaser C, Franke K, Kloppel S, Koutsouleris N, Sauer H. BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer’s disease. PLoS ONE. 2013;8: e67346.

    Article  CAS  Google Scholar 

  19. Gaser C, Franke K, Kloppel S, Koutsouleris N, Sauer H, Alzheimer’s Disease Neuroimaging I. BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer’s disease. PLoS ONE. 2013;8: e67346 (PMID: 23826273).

    Article  CAS  Google Scholar 

  20. Johnson AA, Shokhirev MN, Wyss-Coray T, Lehallier B. Systematic review and analysis of human proteomics aging studies unveils a novel proteomic aging clock and identifies key processes that change with age. Ageing Res Rev. 2020;60: 101070.

    Article  CAS  Google Scholar 

  21. Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of deficits as a proxy measure of aging. ScientificWorldJournal. 2001;1:323–36 (PMID: 12806071).

    Article  CAS  Google Scholar 

  22. Knopman DS, Gottesman RF, Sharrett AR, Wruck LM, Windham BG, Coker L, Schneider AL, Hengrui S, Alonso A, Coresh J, Albert MS, Mosley TH Jr. Mild cognitive impairment and dementia prevalence: the Atherosclerosis Risk in Communities Neurocognitive Study (ARIC-NCS). Alzheimers Dement (Amst). 2016;2:1–11.

    Article  Google Scholar 

  23. Casanova R, Barnard RT, Gaussoin SA, Saldana S, Hayden KM, Manson JE, Wallace RB, Rapp SR, Resnick SM, Espeland MA, Chen JC, Group W-MS, the Alzheimer’s disease Neuroimaging I. Using high-dimensional machine learning methods to estimate an anatomical risk factor for Alzheimer’s disease across imaging databases. Neuroimage. 2018;183:401–11.

    Article  Google Scholar 

  24. Walker KA, Chen J, Zhang J, Fornage M, Yang Y, Zhou L, Grams ME, Tin A, Daya N, Hoogeveen RC, Aozhou Wu, Sullivan KJ, Ganz P, Zeger SL, Gudmundsson EF, Emilsson V, Launer LJ, Jennings LL, Gudnason V, Chatterjee N, Gottesman RF, Mosley TH, Boerwinkle E, Ballantyne CM, Coresh J. Large-scale plasma proteomic analysis identifies proteins and pathways associated with dementia risk. Nature Aging. 2021;1:473–89.

    Article  Google Scholar 

  25. Casanova R, Hsu FC, Espeland MA. Classification of structural MRI images in Alzheimer’s disease from the perspective of ill-posed problems. PLoS One. 2012;7: e44877 (PMID: 23071501).

    Article  CAS  Google Scholar 

  26. Casanova R, Maldjian JA, Espeland MA. Evaluating the impact of different factors on voxel-wise classification methods of ADNI structural MRI brain images. International Journal of Biomedical Datamining. 2011;1:11.

    Google Scholar 

  27. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509.

    Article  Google Scholar 

  28. Franke K, Gaser C, Manor B, Novak V. Advanced BrainAGE in older adults with type 2 diabetes mellitus. Front Aging Neurosci. 2013;5:90.

    Article  Google Scholar 

  29. Cole JH, Poudel RPK, Tsagkrasoulis D, Caan MWA, Steves C, Spector TD, Montana G. Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage. 2017;163:115–24.

    Article  Google Scholar 

  30. Cole JH, Ritchie SJ, Bastin ME, Valdes Hernandez MC, Munoz Maniega S, Royle N, Corley J, Pattie A, Harris SE, Zhang Q, Wray NR, Redmond P, Marioni RE, Starr JM, Cox SR, Wardlaw JM, Sharp DJ, Deary IJ. Brain age predicts mortality. Mol Psychiatry. 2018;23:1385–92 (PMID: 28439103).

    Article  CAS  Google Scholar 

  31. Belsky DW, Caspi A, Houts R, Cohen HJ, Corcoran DL, Danese A, Harrington H, Israel S, Levine ME, Schaefer JD, Sugden K, Williams B, Yashin AI, Poulton R, Moffitt TE. Quantification of biological aging in young adults. Proc Natl Acad Sci U S A. 2015;112:E4104-4110.

    Article  CAS  Google Scholar 

  32. Elliott ML, Caspi A, Houts RM, Ambler A, Broadbent JM, Hancox RJ, Harrington H, Hogan S, Keenan R, Knodt A, Leung JH, Melzer TR, Purdy SC, Ramrakha S, Richmond-Rakerd LS, Righarts A, Sugden K, Thomson WM, Thorne PR, Williams BS, Wilson G, Hariri AR, Poulton R, Moffitt TE. Disparities in the pace of biological aging among midlife adults of the same chronological age have implications for future frailty risk and policy. Nat Aging. 2021;1:295–308.

    Article  Google Scholar 

  33. Elliott ML, Belsky DW, Knodt AR, Ireland D, Melzer TR, Poulton R, Ramrakha S, Caspi A, Moffitt TE, Hariri AR. Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort. Mol Psychiatry. 2021;26:3829–38.

    Article  Google Scholar 

  34. Habes M, Janowitz D, Erus G, Toledo JB, Resnick SM, Doshi J, Van der Auwera S, Wittfeld K, Hegenscheid K, Hosten N, Biffar R, Homuth G, Volzke H, Grabe HJ, Hoffmann W, Davatzikos C. Advanced brain aging: relationship with epidemiologic and genetic risk factors, and overlap with Alzheimer disease atrophy patterns. Transl Psychiatry. 2016;6: e775.

    Article  CAS  Google Scholar 

  35. Kuller LH, Arnold AM, Longstreth WT Jr, Manolio TA, O’Leary DH, Burke GL, Fried LP, Newman AB. White matter grade and ventricular volume on brain MRI as markers of longevity in the cardiovascular health study. Neurobiol Aging. 2007;28:1307–15.

    Article  Google Scholar 

  36. Henneman WJ, Sluimer JD, Cordonnier C, Baak MM, Scheltens P, Barkhof F, van der Flier WM. MRI biomarkers of vascular damage and atrophy predicting mortality in a memory clinic population. Stroke. 2009;40:492–8.

    Article  Google Scholar 

  37. Doerstling S, Hedberg P, Ohrvik J, Leppert J, Henriksen E. Growth differentiation factor 15 in a community-based sample: age-dependent reference limits and prognostic impact. Ups J Med Sci. 2018;123:86–93.

    Article  Google Scholar 

  38. Lim JH, Jeon Y, Ahn JS, Kim S, Kim DK, Lee JP, Ryu DR, Seong EY, Ahn SY, Baek SH, Jung HY, Choi JY, Park SH, Kim CD, Kim YL, Cho JH. GDF-15 predicts in-hospital mortality of critically ill patients with acute kidney injury requiring continuous renal replacement therapy: a multicenter prospective study. J Clin Med 10. 2021

  39. Meyer SL, Wolff D, Ridderbos FS, Eshuis G, Hillege H, Willems TP, Ebels T, van Melle JP, Berger RMF. GDF-15 (growth differentiation factor 15) is associated with hospitalization and mortality in patients with a fontan circulation. J Am Heart Assoc. 2020;9: e015521.

    Article  CAS  Google Scholar 

  40. Sathyan S, Ayers E, Gao T, Weiss EF, Milman S, Verghese J, Barzilai N. Plasma proteomic profile of age, health span, and all-cause mortality in older adults. Aging Cell. 2020;19: e13250.

    Article  CAS  Google Scholar 

  41. Breniere C, Meloux A, Pedard M, Marie C, Thouant P, Vergely C, Bejot Y. Growth differentiation factor-15 (GDF-15) is associated with mortality in ischemic stroke patients treated with acute revascularization therapy. Front Neurol. 2019;10:611.

    Article  Google Scholar 

  42. Chai YL, Hilal S, Chong JPC, Ng YX, Liew OW, Xu X, Ikram MK, Venketasubramanian N, Richards AM, Lai MKP, Chen CP. Growth differentiation factor-15 and white matter hyperintensities in cognitive impairment and dementia. Medicine (Baltimore). 2016;95: e4566.

    Article  CAS  Google Scholar 

  43. He L, Barreto PS, Sanchez Sanchez JL, Rolland Y, Guyonnet S, Parini A, Lucas A, Vellas B, Group MD. Prospective associations of plasma growth differentiation factor 15 with physical performance and cognitive functions in older adults. J Gerontol A Biol Sci Med Sci. 2022.

  44. Alcazar J, Frandsen U, Prokhorova T, Kamper RS, Haddock B, Aagaard P, Suetta C. Changes in systemic GDF15 across the adult lifespan and their impact on maximal muscle power: the Copenhagen Sarcopenia Study. J Cachexia Sarcopenia Muscle. 2021;12:1418–27.

    Article  Google Scholar 

  45. Sarkar S, Melchior JT, Henry HR, Syed F, Mirmira RG, Nakayasu ES, Metz TO. GDF15: a potential therapeutic target for type 1 diabetes. Expert Opin Ther Targets. 2022;26:57–67.

    Article  CAS  Google Scholar 

  46. Sanchis J, Ruiz V, Bonanad C, Sastre C, Ruescas A, Diaz M, Rodriguez E, Valero E, Garcia-Blas S, Carratala A, Nunez E, Nunez J. Growth differentiation factor 15 and geriatric conditions in acute coronary syndrome. Int J Cardiol. 2019;290:15–20.

    Article  Google Scholar 

  47. Wischhusen J, Melero I, Fridman WH. Growth/differentiation factor-15 (GDF-15): from biomarker to novel targetable immune checkpoint. Front Immunol. 2020;11:951.

    Article  CAS  Google Scholar 

  48. Gonzalez-Castillo C, Ortuno-Sahagun D, Guzman-Brambila C, Pallas M, Rojas-Mayorquin AE. Pleiotrophin as a central nervous system neuromodulator, evidences from the hippocampus. Front Cell Neurosci. 2014;8:443.

    Google Scholar 

  49. Lamprou M, Kaspiris A, Panagiotopoulos E, Giannoudis PV, Papadimitriou E. The role of pleiotrophin in bone repair. Injury. 2014;45:1816–23.

    Article  Google Scholar 

  50. Fernandez-Calle R, Vicente-Rodriguez M, Gramage E, Pita J, Perez-Garcia C, Ferrer-Alcon M, Uribarri M, Ramos MP, Herradon G. Pleiotrophin regulates microglia-mediated neuroinflammation. J Neuroinflammation. 2017;14:46.

    Article  Google Scholar 

  51. Toledo JB, Da X, Bhatt P, Wolk DA, Arnold SE, Shaw LM, Trojanowski JQ, Davatzikos C, Alzheimer’s Disease Neuroimaging I. Relationship between plasma analytes and SPARE-AD defined brain atrophy patterns in ADNI. PLoS ONE. 2013;8: e55531.

    Article  CAS  Google Scholar 

  52. Nazeri A, Ganjgahi H, Roostaei T, Nichols T, Zarei M, Alzheimer’s Disease Neuroimaging I. Imaging proteomics for diagnosis, monitoring and prediction of Alzheimer’s disease. Neuroimage. 2014;102(Pt 2):657–65.

    Article  CAS  Google Scholar 

  53. Kant IMJ, Mutsaerts H, van Montfort SJT, Jaarsma-Coes MG, Witkamp TD, Winterer G, Spies CD, Hendrikse J, Slooter AJC, de Bresser J. The association between frailty and MRI features of cerebral small vessel disease. Sci Rep. 2019;9:11343.

    Article  Google Scholar 

  54. Siejka TP, Srikanth VK, Hubbard RE, Moran C, Beare R, Wood A, Phan T, Callisaya ML. Frailty and cerebral small vessel disease: a cross-sectional analysis of the Tasmanian Study of Cognition and Gait (TASCOG). J Gerontol A Biol Sci Med Sci. 2018;73:255–60.

    Article  Google Scholar 

  55. Franke K, Gaser C. Longitudinal changes in individual BrainAGE in healthy aging, mild cognitive impairment, and Alzheimer’s disease. GeroPsych J Gerontopsychology Geriatr Psychiatry. 2012;25:235–45.

    Google Scholar 

Download references

Acknowledgements

The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts (HHSN268201700001I, HHSN268201700002I, HHSN268201700003I, HHSN268201700005I, HHSN268201700004I). Neurocognitive data is collected by U01 2U01HL096812, 2U01HL096814, 2U01HL096899, 2U01HL096902, and 2U01HL096917 from the NIH (NHLBI, NINDS, NIA, and NIDCD), and with previous brain MRI examinations funded by R01-HL70825 from the NHLBI. The authors thank the staff and participants of the ARIC study for their important contributions. SomaLogic Inc. conducted the SomaScan assays in exchange for use of ARIC data. This work was supported in part by NIH/NHLBI grant R01 HL134320. RC and TH receive funding from the Wake Forest Alzheimer’s Disease Core Center (P30AG049638-01A1). We thank the ARIC Neurocognitive Study and the grant P30 AG021332 for funding to develop these analyses. RC and TH receive funding from the P30AG072947. Data collection and sharing for this project were also funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Casanova.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casanova, R., Anderson, A.M., Barnard, R.T. et al. Is an MRI-derived anatomical measure of dementia risk also a measure of brain aging?. GeroScience 45, 439–450 (2023). https://doi.org/10.1007/s11357-022-00650-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-022-00650-z

Keywords

Navigation