Skip to main content

Advertisement

Log in

Cr(III) oxidation coupled with Mn(II) bacterial oxidation in the environment

  • SOILS, SEC 2 * GLOBAL CHANGE, ENVIRON RISK ASSESS, SUSTAINABLE LAND USE * RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Cr(III) oxidation to Cr(VI) significantly increases Cr mobility and toxicity and thus its environmental risks. Manganese (Mn) oxides may serve as the potential oxidants of Cr(III) in environment. Natural Mn oxides in the environment are believed to be derived from bacterial oxidation. The objective of this study was to examine the Cr(III) oxidation capacity of biogenic Mn oxide and the role of Mn-oxidizing bacteria in Cr(III) oxidation.

Materials and methods

Batch experiments were conducted to investigate the capacities of Cr(III) oxidation by chemically synthetic Mn oxides and biogenic Mn oxide. Biogenic Mn oxide was formed by Bacillus sp. WH4, a Mn-oxidizing bacterium isolated from Fe–Mn nodules of a Chinese soil. Various Cr(III) and Mn(II) were added to the growth medium of Bacillus sp. WH4 to evaluate Cr(III) oxidation coupled with Mn(II) bacterial oxidation.

Results

The Cr(III) oxidation capacity of biogenic Mn oxide was 0.24 mmol g−1 and higher than three chemically synthetic Mn oxides. No Mn(III) intermediate was detected during Mn(II) bacterial oxidation. Bacillus sp. WH4 could promote Cr(III) oxidation through oxidizing Mn(II), although it could not oxidize Cr(III) directly.

Conclusions

The participation of Mn-oxidizing bacteria makes Cr(III) oxidation more complicated in environment. These findings illustrate the need to consider bacterial activity and the Mn(II) level when predicting the fate of Cr and the potential applications of Mn oxides in the remediation of pollutants in environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bargar JR, Tebo BM, Bergmann U, Webb SM, Glatzel P, Chiu VQ, Villalobos M (2005) Biotic and abiotic products of Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1. Am Miner 90:143–154

    Article  CAS  Google Scholar 

  • Bartlett RJ, James BR (1988) Chromium in the natural and human environments. Wiley, New York

    Google Scholar 

  • Chinni S, Anderson CR, Ulrich KU, Giammar DE, Tebo BM (2008) Indirect UO2 oxidation by Mn(II)-oxidizing spores of Bacillus sp. strain SG-1 and the effect of U and Mn concentrations. Environ Sci Technol 42:8709–8714

    Article  CAS  Google Scholar 

  • Chung JB, Zasoski RJ, Lim SU (1994) Kinetics of chromiumu(III) oxidation by various manganese oxides. Agr Chem Biotechnol 37:414–420

    CAS  Google Scholar 

  • Fendorf SE, Zasoski RJ (1992) Chromium(III) oxidation by δ-MnO2. 1. Characterization. Environ Sci Technol 26:79–85

    Article  CAS  Google Scholar 

  • Feng XH, Liu F, Tan WF, Liu XW (2004a) Synthesis of birnessite from the oxidation of Mn2+ by O2 in alkali medium: Effects of synthesis conditions. Clay Clay Miner 52:240–250

    Article  CAS  Google Scholar 

  • Feng XH, Tan WF, Liu F, Wang JB, Ruan HD (2004b) Synthesis of todorokite at atmospheric pressure. Chem Mater 16:4330–4336

    Article  CAS  Google Scholar 

  • Feng XH, Zhai LM, Tan WF, Liu F, He JZ (2007) Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals. Environ Pollut 147:366–373

    Article  CAS  Google Scholar 

  • Hastings D, Emerson S (1986) Oxidation of manganese by spores of a marine bacillus: Kinetic and thermodynamic considerations. Geochim Cosmochim Ac 50:1819–1824

    Article  CAS  Google Scholar 

  • He JZ, Zhang LM, Jin SS, Zhu YG, Liu F (2008) Bacterial communities inside and surrounding soil iron–manganese nodules. Geomicrobiol J 25:14–24

    Article  Google Scholar 

  • Jin SS, He JZ, Zheng YM, Meng YT, Zhang LM (2009) Adsorption of heavy metals by biogenic manganese oxides. Acta Scientiae Circumstantiae 29:132–139

    CAS  Google Scholar 

  • Kim HS, Pasten PA, Gaillard JF, Stair PC (2003) Nanocrystalline todorokite-like manganese oxide produced by bacterial catalysis. J Am Chem Soc 125:14284–14285

    Article  CAS  Google Scholar 

  • Klewicki JK, Morgan JJ (1998) Kinetic behavior of Mn(III) complexes of pyrophosphate, EDTA, and citrate. Environ Sci Technol 32:2916–2922

    Article  CAS  Google Scholar 

  • Krumbein WE, Altmann HJ (1973) A new method for the detection and enumeration of manganese oxidizing and reducing microorganisms. Helgoland Mar Res 25:347–356

    CAS  Google Scholar 

  • Lee YT, Tebo BM (1994) Cobalt(II) oxidation by the marine manganese(II)-oxidizing Bacillus sp. strain SG-1. Appl Environ Microbiol 60:2949–2957

    CAS  Google Scholar 

  • Meng YT, Zheng YM, Zhang LM, He JZ (2009) Biogenic Mn oxides for effective adsorption of Cd from aquatic environment. Environ Pollut 157:2577–2583

    Article  CAS  Google Scholar 

  • Morgan JJ (2005) Kinetics of reaction between O2 and Mn(II) species in aqueous solutions. Geochim Cosmochim Ac 69:35–48

    Article  CAS  Google Scholar 

  • Murray KJ, Tebo BM (2007) Cr(III) is indirectly oxidized by the Mn(II)-oxidizing bacterium Bacillus sp. strain SG-1. Environ Sci Technol 41:528–533

    Article  CAS  Google Scholar 

  • Murray KJ, Mozafarzadeh ML, Tebo BM (2005) Cr(III) oxidation and Cr toxicity in cultures of the manganese(II)-oxidizing Pseudomonas putida strain GB-1. Geomicrobiol J 22:151–159

    Article  CAS  Google Scholar 

  • Murray KJ, Webb SM, Bargar JR, Tebo BM (2007) Indirect oxidation of Co(II) in the presence of the marine Mn(II)-oxidizing bacterium Bacillus sp. strain SG-1. Appl Environ Microbiol 73:6905–6909

    Article  CAS  Google Scholar 

  • Nealson KH, Tebo BM, Rosson RA, Allen IL (1988) Occurrence and mechanisms of microbial oxidation of manganese. Adv Appl Microbiol 33:279–318

    Article  CAS  Google Scholar 

  • Nelson YM, Lion LW, Ghiorse WC, Shuler ML (1999) Production of biogenic Mn oxides by Leptothrix discophora SS-1 in a chemically defined growth medium and evaluation of their Pb adsorption characteristics. Appl Environ Microbiol 65:175–180

    CAS  Google Scholar 

  • Nico PS, Zasoski RJ (2000) Importance of Mn(III) availability on the rate of Cr(III) oxidation on δ-MnO2. Environ Sci Technol 34:3363–3367

    Article  CAS  Google Scholar 

  • Ohnuki T, Ozaki T, Kozai N, Nankawa T, Sakamoto F, Sakai T, Suzuki Y, Francis AJ (2008) Concurrent transformation of Ce(III) and formation of biogenic manganese oxides. Chem Geol 253:23–29

    Article  CAS  Google Scholar 

  • Oze C, Bird DK, Fendorf S (2007) Genesis of hexavalent chromium from natural sources in soil and groundwater. PNAS 104:6544–6549

    Article  CAS  Google Scholar 

  • Rophael MW (1982) Kinetics of the oxidation of chromium (III) by manganese (III) in sulfuric-acid medium. Chemica Scripta 20:171–173

    CAS  Google Scholar 

  • Rosson RA, Nealson KH (1982) Manganese binding and oxidation by spores of a marine Bacillus. J Bacteriol 151:1027–1034

    CAS  Google Scholar 

  • Silvester E, Charlet L, Manceau A (1995) Mechanism of chromium(III) oxidation by Na-buserite. J Phys Chem 99:16662–16669

    Article  CAS  Google Scholar 

  • Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R, Webb SM (2004) Biogenic manganese oxides: Properties and mechanisms of formation. Annu Rev Earth Pl Sci 32:287–328

    Article  CAS  Google Scholar 

  • Toner B, Manceau A, Webb SM, Sposito G (2006) Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm. Geochim Cosmochim Ac 70:27–43

    Article  CAS  Google Scholar 

  • Urone PF (1955) Stability of colorimetric reagent for chromium, s-diphenylcarbazide, in various solvents. Anal Chem 27:1354–1355

    Article  CAS  Google Scholar 

  • Villalobos M, Toner B, Bargar J, Sposito G (2003) Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1. Geochim Cosmochim Ac 67:2649–2662

    Article  CAS  Google Scholar 

  • Villalobos M, Bargar J, Sposito G (2005) Mechanisms of Pb(II) sorption on a biogenic manganese oxide. Environ Sci Technol 39:569–576

    Article  CAS  Google Scholar 

  • Weaver RM, Hochella JMF (2003) The reactivity of seven Mn-oxides with Cr3+aq: A comparative analysis of a complex, environmentally important redox reaction. Am Miner 88:2016–2027

    CAS  Google Scholar 

  • Weaver RM, Hochella JMF, Ilton ES (2002) Dynamic processes occurring at the CrIIIaq-manganite (γ-MnOOH) interface: simultaneous adsorption, microprecipitation, oxidation/reduction, and dissolution. Geochim Cosmochim Ac 66:4119–4132

    Article  CAS  Google Scholar 

  • Webb SM, Dick GJ, Bargar JR, Tebo BM (2005) Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II). PNAS 102:5558–5563

    Article  CAS  Google Scholar 

  • Wu Y, Deng BL, Xu H, Kornishi H (2005) Chromium(III) oxidation coupled with microbially mediated Mn(II) oxidation. Geomicrobiol J 22:161–170

    Article  CAS  Google Scholar 

  • Zhang LM, Liu F, Tan WF, Feng XH, Zhu YG, He JZ (2008) Microbial DNA extraction and analyses of soil iron-manganese nodules. Soil Biol Biochem 40:1364–1369

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology of China (2005CB121104), the Chinese Academy of Sciences (KZCX1-YW-06-03), and the Natural Science Foundation of China (40671172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Zheng He.

Additional information

Responsible editor: Hailong Wang

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, JZ., Meng, YT., Zheng, YM. et al. Cr(III) oxidation coupled with Mn(II) bacterial oxidation in the environment. J Soils Sediments 10, 767–773 (2010). https://doi.org/10.1007/s11368-009-0139-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-009-0139-0

Keywords

Navigation