Skip to main content
Log in

The effect of nitrification inhibitors in reducing nitrification and the ammonia oxidizer population in three contrasting soils

  • Soils, Sec2 • Global Change, Environ Risk Assess, Sustainable Land Use • Short Original Communication
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

3,4-Dimethylpyrazole phosphate (DMPP) and acetylene (C2H2) are widely used nitrification inhibitors. These nitrification inhibitors have shown inconsistent efficacy in different soils, demonstrating the importance of determining which soil and microbial factors cause this variability. The aim of the present study was to investigate the efficacy of DMPP and C2H2 to inhibit nitrification and the ammonia oxidizer population in three contrasting soil types from Australia.

Materials and methods

Three contrasting soils of different pHWater (4.6, 7.0, and 8.0) collected from different agriculture systems in Australia were used in a laboratory incubation experiment for 28 days to compare the efficacy of DMPP and C2H2 to inhibit nitrification. We measured mineral nitrogen (N) concentrations during the incubation. In addition, quantitative PCR was applied to quantify the ammonia oxidizer population and to investigate the population change in response to DMPP and C2H2 addition.

Results and discussion

Acetylene completely blocked nitrification in the three soils while DMPP was more effective in inhibiting nitrification in the neutral soil (93.5 %) than in the alkaline soil (85.1 %) and acid soil (70.5 %). Ammonia-oxidizing archaea (AOA) were more abundant than ammonia-oxidizing bacteria (AOB) in all three control soils, with the highest AOA abundance found in the acid soil. The addition of DMPP and C2H2 significantly decreased AOA abundance in all soils (P < 0.05) and significantly suppressed AOB abundance in the neutral soil and slightly blocked AOB growth in the alkaline soil, though it had no effect on AOB abundance in the acid soil.

Conclusions

Our results show C2H2 completely inhibited nitrification and performed better than DMPP in our study. DMPP was more effective in the neutral soil than other two soils. Neither DMPP nor C2H2 was a selective nitrification inhibitor in neutral and alkaline soils in which both AOA and AOB were inhibited. Neither DMPP nor C2H2 had any effect on AOB abundance in the acid soil. Soil pH plays an important role in the effectiveness of DMPP and C2H2 in inhibiting nitrification and ammonia oxidizer population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Barth G, Von Tucher S, Schmidhalter U (2001) Influence of soil parameters on the effect of 3, 4-dimethylpyrazole-phosphate as a nitrification inhibitor. Biol Fertil Soils 34:98–102

    Article  CAS  Google Scholar 

  • Barth G, Von Tucher S, Schmidhalter U (2008) Effectiveness of 3, 4-dimethylpyrazole phosphate as nitriflcation inhibitor in soil as influenced by inhibitor concentration, application form, and soil matric potential. Pedosphere 18:378–385

    Article  CAS  Google Scholar 

  • Bremner J, Blackmer AM (1978) Nitrous oxide: emission from soils during nitrification of fertilizer nitrogen. Science 199:295–296

    Article  CAS  Google Scholar 

  • Chalk PM (1990) Effect of a nitrification inhibitor on immobilization and mineralization of soil and fertilizer nitrogen. Vol-22

  • Chen D, Suter HC, Islam A, Edis R (2010) Influence of nitrification inhibitors on nitrification and nitrous oxide (N2O) emission from a clay loam soil fertilized with urea. Soil Biol Biochem 42:660–664

    Article  CAS  Google Scholar 

  • Crawford D, Chalk P (1993) Sources of N uptake by wheat (Triticum aestivum L.) and N transformations in soil treated with a nitrification inhibitor (nitrapyrin). PLSO 149:59–72

    CAS  Google Scholar 

  • De Boer W, Kowalchuk G (2001) Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol Biochem 33:853–866

    Article  Google Scholar 

  • Di HJ, Cameron KC, Shen JP (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci 2:621–624

    Article  CAS  Google Scholar 

  • Di HJ, Cameron KC, Shen JP, Winefoeld CS, O'callaghan M, Bowatte S, He JZ (2010) Ammonia‐oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol Ecol 72:386–394

    Article  CAS  Google Scholar 

  • Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W (2009) Environmental factors shaping the ecological niches of ammonia oxidizing archaea. FEMS Microbiol Rev 33:855–869

    Article  CAS  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    Article  CAS  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688

    Article  CAS  Google Scholar 

  • Girvan MS, Bullimore J, Pretty JN, Osborn AM, Ball AS (2003) Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl Environ Microbiol 69:1800–1809

    Article  CAS  Google Scholar 

  • Gubry-Rangin C, Nicol GW, Prosser JI (2010) Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol Ecol 74:566–574

    Article  CAS  Google Scholar 

  • He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di HJ (2007) Quantitative analyses of the abundance and composition of ammonia‐oxidizing bacteria and ammonia‐oxidizing archaea of a Chinese upland red soil under long‐term fertilization practices. Environ Microbiol 9:2364–2374

    Article  CAS  Google Scholar 

  • Hu HW, Zhang LM, Dai Y, Di HJ, He JZ (2013) pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. J Soils Sediments 13:1439–1449

    Article  Google Scholar 

  • Hynes RK, Knowles R (1982) Inhibition by acetylene of ammonia oxidation in Nitrosomonas europaea. FEMS Microbiol Lett 4:319–321

    Article  Google Scholar 

  • Jia Z, Conrad R (2009) Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11:1658–1671

    Article  CAS  Google Scholar 

  • Joye SB, Hollibaugh JT (1995) Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments. Science 270:623–625

    Article  CAS  Google Scholar 

  • Juliette LY, Hyman MR, Arp DJ (1993) Mechanism-based inactivation of ammonia monooxgenase in Nitrosomonas europaea by Allysulfide. Environ Microbiol 59:3728–3735

    CAS  Google Scholar 

  • Kemmitt SJ, Wright DG, Keith WT, Jones DL (2006) pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol Biochem 38:898–911

    Article  CAS  Google Scholar 

  • Kleineidam K, Kosmrlj K, Kublik S, Palmer I, Pfab H, Ruser P, Fiedler S, Schloter M (2011) Influence of the nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) on ammonia-oxidizing bacteria and archaea in rhizosphere and bulk soil. Chemosphere 84:182–186

    Article  CAS  Google Scholar 

  • Martens-Habbena W, Berube PM, Urakawa H, Jose R, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976–979

    Article  CAS  Google Scholar 

  • Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10:2966–2978

    Article  CAS  Google Scholar 

  • Offre P, Prosser JI, Nicol GW (2009) Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS Microbiol Ecol 70:99–108

    Article  CAS  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Environ Microbiol 63:4704–4712

    CAS  Google Scholar 

  • Shen JP, Zhang LM, Zhu YG, Zhang JB, He JZ (2008) Abundance and composition of ammonia‐oxidizing bacteria and ammonia‐oxidizing archaea communities of an alkaline sandy loam. Environ Microbiol 10:1601–1611

    Article  CAS  Google Scholar 

  • Shi M, Zhang MT, Shen F, Liang DL, Dang HL (2011) Effects of nitrification inhibitors on nitrification inhibition and nitrite accumulation in calcareous soil. Sci Agric Sin 3:010

    Google Scholar 

  • Šimek M, Cooper J (2002) The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. Eur J Soil Sci 53:345–354

    Article  Google Scholar 

  • Suzuki C, Nagaoka K, Shimada A, Takenaka M (2009) Bacterial communities are more dependent on soil type than fertilizer type, but the reverse is true for fungal communities. Soil Sci Plant Nutr 55:80–90

    Article  CAS  Google Scholar 

  • Verhamme DT, Prosser JI, Nicol GW (2011) Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J 5:1067–1071

    Article  CAS  Google Scholar 

  • Zerulla W, Barth T, Dressel J, Erhardt K, Klaus H, Pasda G, Radle M, Wissemeier A (2001) 3, 4-Dimethylpyrazole phosphate (DMPP)—a new nitrification inhibitor for agriculture and horticulture. Biol Fertil Soils 34:79–84

    Article  CAS  Google Scholar 

  • Zhang LM, Hu HW, Shen JP, He JZ (2011) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6:1032–1045

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support by Incitec Pivot Limited and the Australian Government Department of Agriculture through the Grains Research and Development Corporation. Dr. John Freney, Dr. Shu Kee (Raymond) Lam, and Dr. Hangwei Hu provided their assistance during manscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Liu.

Additional information

Responsible Editor: Hailong Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Hayden, H., Suter, H. et al. The effect of nitrification inhibitors in reducing nitrification and the ammonia oxidizer population in three contrasting soils. J Soils Sediments 15, 1113–1118 (2015). https://doi.org/10.1007/s11368-015-1086-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-015-1086-6

Keywords

Navigation