Skip to main content
Log in

Biomineralization of atrazine and analysis of 16S rRNA and catabolic genes of atrazine degraders in a former pesticide mixing site and a machinery washing area

  • Soils, Sec 5 • Soil and Landscape Ecology • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to determine the first-order rate constants and half-lives of aerobic and anaerobic biomineralization of atrazine in soil samples from an agricultural farm site that had been previously used for mixing pesticide formulations and washing application equipment. Atrazine catabolic genes and atrazine-degrading bacteria in the soil samples were analyzed by molecular methods.

Materials and methods

Biomineralization of atrazine was measured in soil samples with a [U-ring-14C]-atrazine biometer technique in soil samples. Enrichment cultures growing with atrazine were derived from soil samples and they were analyzed for bacterial diversity by constructing 16S rDNA clone libraries and sequencing. Bacterial isolates were also obtained and they were screened for atrazine catabolic genes.

Results and discussion

The soils contained active atrazine-metabolizing microbial communities and both aerobic and anaerobic biomineralization of [U-ring-14C]-atrazine to 14CO2 was demonstrated. In contrast to aerobic incubations, anaerobic biometers displayed considerable differences in the kinetics of atrazine mineralization between duplicates. Sequence analysis of 16S rDNA clone libraries constructed from the enrichment cultures revealed a preponderance of Variovorax spp. (51 %) and Schlesneria (16 %). Analysis of 16S rRNA gene sequences from pure cultures (n = 12) isolated from enrichment cultures yielded almost exclusively Arthrobacter spp. (83 %; 10/12 isolates). PCR screening of pure culture isolates for atrazine catabolic genes detected atzB, atzC, trzD, trzN, and possibly atzA. The presence of a complete metabolic pathway was not demonstrated by the amplification of catabolic genes among these isolates.

Conclusions

The soils contained active atrazine-metabolizing microbial communities. The anaerobic biometer data showed variable response of atrazine biomineralization to external electron acceptor conditions. Partial pathways are inevitable in soil microbial communities, with metabolites linking into other catabolic and assimilative pathways of carbon and nitrogen. There was no evidence for the complete set of functional genes of the known pathways of atrazine biomineralization among the isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abigail MEA, Lakshmi V, Das N (2012) Biodegradation of atrazine by Cryptococcus laurentii isolated from contaminated agricultural soil. J Microbiol Biotechnol Res 2:450–457

    Google Scholar 

  • Abigail MEA, Salam JA, Das N (2013) Atrazine degradation in liquid culture and soil by a novel yeast Pichia kudriavzevii strain Atz-EN-01 and its potential application for bioremediation. J Appl Pharmaceut Sci 3(6):35–40

    Google Scholar 

  • Arthur EL, Perkovich BS, Anderson TA, Coats JR (2000) Degradation of an atrazine and metolachlor herbicide mixture in pesticide-contaminated soils from two agrochemical dealerships in Iowa. Water Air Soil Pollut 119:75–90

    Article  CAS  Google Scholar 

  • Aislabie J, Bej AK, Ryburn J, Lloyd N, Wilkins A (2005) Characterization of Arthrobacter nicotinovorans HIM, an atrazine-degrading bacterium, from agricultural soil New Zealand. FEMS Microbiol Ecol 52:279–286

    Article  CAS  Google Scholar 

  • Bastos AC, Magan N (2009) Trametes versicolor: potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. Int Biodeter Biodegr 63:389–394

    Article  CAS  Google Scholar 

  • Boundy-Mills KL, de Souza ML, Mandelbaum RT, Wackett LP, Sadowsky MJ (1997) The atzB gene of Pseudomonas sp. strain ADP encodes the second enzyme of a novel atrazine degradation pathway. Appl Environ Microbiol 63:916–923

    CAS  Google Scholar 

  • Cheng G, Shapir N, Sadowsky MJ, Wackett LP (2005) Allophanate hydrolase, not urease, functions in bacterial cyanuric acid metabolism. Appl Environ Microbiol 71:4437–4445

    Article  CAS  Google Scholar 

  • Chirnside AEM, Ritter WF, Radosevich M (2007) Isolation of a selected microbial consortium from a pesticide-contaminated mix-load site soil capable of degrading the herbicides atrazine and alachlor. Soil Biol Biochem 39:3056–3065

    Article  CAS  Google Scholar 

  • Chirnside AEM, Ritter WF, Radosevich M (2009) Biodegradation of aged residues of atrazine and alachlor in a mixed-load site soil. Soil Biol Biochem 41:2484–2492

    Article  CAS  Google Scholar 

  • de Souza ML, Wackett LP, Boundy-Mills KL, Mandelbaum RT, Sadowsky MJ (1995) Cloning, characterization, and expression of a gene region from Pseudomonas sp. strain ADP involved in the dechlorination of atrazine. Appl Environ Microbiol 61:3373–3378

    Google Scholar 

  • de Souza ML, Seffernick J, Martinez B, Sadowsky MJ, Wackett LP (1998) The atrazine catabolism genes atzABC are widespread and highly conserved. J Bacteriol 180:1951–1954

    Google Scholar 

  • de Wilde T, Spanoghe P, Debaer C, Ryckeboer J, Springael D, Jaeken P (2007) Overview of on-farm bioremediation systems to reduce the occurrence of point source contamination. Pest Manag Sci 63:111–128

    Article  Google Scholar 

  • del Pilar Castillo M, Torstensson L, Stenström J (2008) Biobeds for environmental protection from pesticide use—a review. J Agric Food Chem 56:6206–6219

    Article  Google Scholar 

  • Devers M, Soulas G, Martin-Laurent F (2004) Real-time reverse transcription PCR analysis of expression of atrazine catabolism genes in two bacterial strains isolated from soil. J Microbiol Meth 56:3–15

    Article  CAS  Google Scholar 

  • Devers M, El Azhari N, Kolic N-U, Martin-Laurent F (2007) Detection and organization of atrazine-degrading genetic potential of seventeen bacterial isolates belonging to divergent taxa indicate a recent common origin of their catabolic functions. FEMS Microbiol Lett 273:78–86

    Article  CAS  Google Scholar 

  • Donnelly PK, Entry JA, Crawford DL (1993) Degradation of atrazine and 2,4-dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro. Appl Environ Microbiol 59:2642–2647

    CAS  Google Scholar 

  • Douglass JF, Radosevich M, Tuovinen OH (2014) Mineralization of atrazine in the river water intake and sediments of a constructed flow-through wetland. Ecol Eng 72:35–39

    Article  Google Scholar 

  • Douglass JF, Radosevich M, Tuovinen OH (2015) Molecular analysis of atrazine-degrading bacteria and catabolic genes in the water column and sediment of a created wetland in an agricultural/urban watershed. Ecol Eng 83:405–412

    Article  Google Scholar 

  • Eaton RW, Karns JS (1991) Cloning and analysis of s-triazine catabolic genes from Pseudomonas sp. strain NRRLB-12227. J Bacteriol 173:1215–1222

    CAS  Google Scholar 

  • El Sebaï T, Devers-Lamrani M, Changey F, Rouard N, Martin-Laurent F (2011) Evidence of atrazine mineralization in a soil from the Nile Delta: isolation of Arthrobacter sp. TES6, an atrazine-degrading strain. Int Biodeter Biodegrad 65:1249–1255

    Article  Google Scholar 

  • Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183

    Article  Google Scholar 

  • Fan X, Song F (2014) Bioremediation of atrazine: recent advances and promises. J Soils Sedim 14:1727–1737

    Article  CAS  Google Scholar 

  • Fenner K, Canonica S, Wackett LP, Elsner M (2013) Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341:752–758

    Article  CAS  Google Scholar 

  • Ghosh D, Roy K, Srinivasan V, Mueller T, Tuovinen OH, Sublette K, Peacock A, Radosevich M (2009) In-situ enrichment and analysis of atrazine-degrading microbial communities using atrazine-containing porous beads. Soil Biol Biochem 41:1331–1334

    Article  CAS  Google Scholar 

  • Grigg BC, Assaf NA, Turco RF (1997) Removal of atrazine contamination in soil and liquid systems using bioaugmentation. Pestic Sci 50:211–220

    Article  CAS  Google Scholar 

  • Guerin WF, Boyd SA (1992) Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Appl Environ Microbiol 58:1142–1152

    CAS  Google Scholar 

  • Karns JS, Eaton RW (1997) Genes encoding s-triazine degradation are plasmid-borne in Klebsiella pneumoniae strain 99. J Agric Food Chem 45:1017–1022

    Article  CAS  Google Scholar 

  • Krutz LJ, Shaner DL, Weaver MA, Webb RMT, Zablotowicz RM, Reddy KN, Huang Y, Thomson SJ (2010) Agronomic and environmental implications of enhanced s-triazine degradation. Pest Manag Sci 66:461–481

    Article  Google Scholar 

  • Krutz LJ, Zablotowicz RM, Reddy KN (2012) Selection pressure, cropping system, and rhizosphere proximity affect atrazine degrader populations and activity in s-triazine-adapted soil. Weed Sci 60:516–524

    Article  CAS  Google Scholar 

  • Kulichevskaya IS, Ivanova AO, Belova SE, Baulina OI, Bodelier PLE, Rijpstra WIC, Damsté JSS, Zavarzin GA, Dedysh SN (2007) Schlesneria paludicola gen. nov., sp. nov., the first acidophilic member of the order Planctomycetales, from Sphagnum-dominated boreal wetlands. Int J System Evol Microbiol 57:2680–2687

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic Acid Techniques in Bacterial Systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Lazorko-Connon S, Achari G (2009) Atrazine: its occurrence and treatment in water. Environ Rev 17:199–214

    Article  CAS  Google Scholar 

  • Lian B, Jiang J, Zhang J, Zhao Y, Li S (2012) Horizontal transfer of dehalogenase genes involved in the catalysis of chlorinated compounds: evidence and ecological role. Crit Rev Microbiol 38:95–110

    Article  Google Scholar 

  • Liu X, Hui C, Bi L, Romantschuk M, Kontro M, Strömmer R, Hui N (2016) Bacterial community structure in atrazine treated reforested farmland in Wuying China. Appl Soil Ecol 98:39–46

    Article  CAS  Google Scholar 

  • Martinez B, Tomkins J, Wackett LP, Wing R, Sadowsky MJ (2001) Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 183:5684–5697

    Article  CAS  Google Scholar 

  • Masaphy S, Levanon D, Henis Y (1996) Degradation of atrazine by the lignocellulolytic fungus Pleurotus pulmonarius during solid-state fermentation. Bioresour Technol 56:207–214

    Article  CAS  Google Scholar 

  • Mougin C, Laugero C, Asther M, Dubroca J, Frasse P, Asther M (1994) Biotransformation of the herbicide atrazine by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 60:705–708

    CAS  Google Scholar 

  • Mudhoo A, Garg VK (2011) Sorption, transport and transformation of atrazine in soils, minerals and composts: a review. Pedosphere 21:11–25

    Article  CAS  Google Scholar 

  • Mueller TC, Steckel LE, Radosevich M (2010) Effect of soil pH and previous atrazine use history on atrazine degradation in a Tennessee field soil. Weed Sci 58:478–483

    Article  CAS  Google Scholar 

  • Mulbry WW, Zhu H, Nour SM, Topp E (2002) The triazine hydrolase gene trzN from Nocardioides sp. strain C190: cloning and construction of gene-specific primers. FEMS Microbiol Lett 206:75–79

    Article  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • O’Donnell AG, Young IM, Rushton SP, Shirley MD, Crawford JW (2007) Visualization, modelling and prediction in soil microbiology. Nature Rev Microbiol 5:689–699

    Article  Google Scholar 

  • Omotayo AE, Ilori MO, Amund OO, Ghosh D, Roy K, Radosevich M (2011) Establishment and characterization of atrazine degrading cultures from Nigerian agricultural soil using traditional and Bio-Sep bead enrichment techniques. Appl Soil Ecol 48:63–70

    Article  Google Scholar 

  • Pussemier L, Goux S, Vanderheyden V, Debongnie P, Tresinie I, Foucart G (1997) Rapid dissipation of atrazine in soils taken from various maize fields. Weed Res 37:171–179

    Article  CAS  Google Scholar 

  • Radosevich M, Traina SJ, Hao Y-L, Tuovinen OH (1995) Degradation and mineralization of atrazine by a soil bacterial isolate. Appl Environ Microbiol 61:297–302

    CAS  Google Scholar 

  • Radosevich M, Traina SJ, Tuovinen OH (1996) Biodegradation of atrazine in surface soils and subsurface sediments collected from an agricultural research farm. Biodegradation 7:137–149

    Article  CAS  Google Scholar 

  • Romero MC, Urrutia MI, Reinoso EH, Vedoval RD, Reynaldi FJ (2014) Atrazine degradation by wild filamentous fungi. Global Res J Microbiol 4:10–16

    Google Scholar 

  • Rousseaux S, Hartmann A, Soulas G (2001) Isolation and characterisation of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils. FEMS Microbiol Ecol 36:211–222

    Article  CAS  Google Scholar 

  • Sadowsky MJ, Tong Z, de Souza M, Wackett LP (1998) AtzC is a new member of the amidohydrolase protein superfamily and is homologous to other atrazine-metabolizing enzymes. J Bacteriol 180:152–158

    CAS  Google Scholar 

  • Sajjaphan K, Shapir N, Wackett LP, Palmer M, Blackmon B, Tomkins J, Sadowsky MJ (2004) Arthrobacter aurescens TC1 atrazine catabolism genes trzN, atzB, and atzC are linked on a 160-kilobase region and are functional in Escherichia coli. Appl Environ Microbiol 70:4402–4407

    Article  CAS  Google Scholar 

  • Sajjaphan K, Heepngoen P, Sadowsky MJ, Boonkerd N (2010) Arthrobacter sp. strain KU001 isolated from a Thai soil degrades atrazine in the presence of inorganic nitrogen sources. J Microbiol Biotechnol 20:602–608

    CAS  Google Scholar 

  • Singh B, Singh K (2016) Microbial degradation of herbicides. Crit Rev Microbiol 42:245–261

    CAS  Google Scholar 

  • Smith D, Alvey S, Crowley DE (2005) Cooperative catabolic pathways within an atrazine-degrading enrichment culture isolated from soil. FEMS Microbiol Ecol 53:265–273

    Article  CAS  Google Scholar 

  • Spanoghe P, Maes A, Steurbaut W (2009) Limitation of point source pesticide pollution: results of bioremediation system. Comm Appl Biol Sci Ghent Univ 74(2):1–14

    Google Scholar 

  • Stamper DM, Radosevich M, Hallberg KB, Traina SJ, Tuovinen OH (2002) Ralstonia basilensis M91-3, a denitrifying soil bacterium capable of using s-triazines as nitrogen sources. Can J Microbiol 48:1089–1098

    Article  CAS  Google Scholar 

  • Tuovinen OH, Desmukh V, Özkaya B, Radosevich M (2015) Kinetics of aerobic and anaerobic biomineralization of atrazine in surface and subsurface agricultural soils in Ohio. J Environ Sci Health B50:718–726

    Article  Google Scholar 

  • Udiković N, Hršak D, Mendaš G, Filipčić D (2003) Enrichment and characterization of atrazine degrading microbial communities. Food Technol Biotechnol 41:211–217

    Google Scholar 

  • Udiković Kolić N, Hršak D, Kolar AB, Petrić I, Stipičevic S, Soulas G, Martin-Laurent F (2007) Combined metabolic activity within an atrazine-mineralizing community enriched from agrochemical factory soil. Int Biodeter Biodegrad 60:299–307

    Article  Google Scholar 

  • Udiković-Kolić N, Hršak D, Devers M, Klepac-Ceraj V, Petrič I, Martin-Laurent F (2010) Taxonomic and functional diversity of atrazine-degrading bacterial communities enriched from agrochemical factory soil. J Appl Microbiol 109:355–367

    Google Scholar 

  • Udiković-Kolić N, Scott C, Martin-Laurent F (2012) Evolution of atrazine-degrading capabilities in the environment. Appl Microbiol Biotechnol 96:1175–1189

    Article  Google Scholar 

  • Vargha M, Takátsc Z, Márialigeti K (2005) Degradation of atrazine in a laboratory scale model system with Danube river sediment. Water Res 39:1560–1568

    Article  CAS  Google Scholar 

  • Vaishampayan PA, Kanekar PP, Dhakephalkar PK (2007) Isolation and characterization of Arthrobacter sp. strain MCM B-436, an atrazine-degrading bacterium, from rhizospheric soil. Int Biodeter Biodegr 60:273–278

    Article  CAS  Google Scholar 

  • Vibber LL, Pressler MJ, Colores GM (2007) Isolation and characterization of novel atrazine-degrading microorganisms from an agricultural soil. Appl Microbiol Biotechnol 75:921–928

    Article  CAS  Google Scholar 

  • Zhang Y, Jiang Z, Cao B, Hu M, Wang Z, Dong X (2011) Metabolic ability and gene characteristics of Arthrobacter sp. strain DNS10, the sole atrazine-degrading strain in a consortium isolated from black soil. Int Biodeter Biodegrad 65:1140–1144

    Article  CAS  Google Scholar 

  • Zhang Y, Cao B, Jiang Z, Dong X, Hu M, Wang Z (2012) Metabolic ability and individual characteristics of an atrazine-degrading consortium DNC5. J Hazard Mater 237–238:376–381

    Article  Google Scholar 

Download references

Acknowledgments

The work was funded through the USDA National Research Initiative, grant no. 2004-35107-14884. JFD gratefully acknowledges a Fellowship from the Robert H. Edgerley Environmental Toxicology Fund, Division of Natural and Mathematical Sciences of the College of Arts and Sciences, Ohio State University. We thank two anonymous reviewers for insightful suggestions that were helpful in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olli H. Tuovinen.

Additional information

Responsible editor: Jizheng He

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douglass, J.F., Radosevich, M. & Tuovinen, O.H. Biomineralization of atrazine and analysis of 16S rRNA and catabolic genes of atrazine degraders in a former pesticide mixing site and a machinery washing area. J Soils Sediments 16, 2263–2274 (2016). https://doi.org/10.1007/s11368-016-1416-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-016-1416-3

Keywords

Navigation