Skip to main content

Advertisement

Log in

The biogeography of fungal communities in paddy soils is mainly driven by geographic distance

  • Soils, Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to answer how the biogeographic patterns of fungi are affected by spatial and environmental factors in paddy soils characterized by unique field management. Given the generally low C/N ratios of paddy soils, we also want to test a hypothesis that the dominant fungi in paddy soils are Ascomycota, which reportedly prefer habitats with low soil C/N ratios.

Materials and methods

Using quantitative PCR and barcoded pyrosequencing, we investigated the abundance, diversity, and community composition of fungal communities in 30 surface paddy soil samples collected from 10 rice cultivation regions of China. Pearson’s correlation, analysis of variance, partial least squares regression, principal coordinates analysis, and variation partition were performed for analyses of gene copy numbers, α-diversity, β-diversity, and relative abundances of fungal taxa and their relationships with environmental factors.

Results and discussion

The abundance of fungal 18S rRNA gene varied from 106.4 to 108.6 copies g−1 soil, and was positively correlated with soil sand, organic matter, and total nitrogen content, and negatively correlated with soil chloride concentration. Ascomycota comprised 88% of total fungal sequences and increased in relative abundance with increasing soil pH and decreasing mean annual temperature (MAT) and precipitation (MAP). The predominance of Ascomycota in fungal communities is probably due to the low soil C/N ratios (9–15) in the paddy soils studied. The α-diversity increased with MAT, MAP, and soil nitrate-N and total nitrogen content but decreased with soil pH, clay content, chloride concentration, and C/N ratio. Variation partition revealed that fungal β-diversity was mainly driven by geographic distance.

Conclusions

In paddy soils which are characterized by intensive rice cropping practices, fungal abundance is mainly influenced by soil properties, fungal α-diversity is constrained by both climatic factors and soil properties, while fungal community compositions are mainly structured by geographic distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allison SD, Hanson CA, Treseder KK (2007) Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol Biochem 39(8):1878–1887. https://doi.org/10.1016/j.soilbio.2007.02.001

    Article  CAS  Google Scholar 

  • Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10(1):189. https://doi.org/10.1186/1471-2180-10-189

    Article  Google Scholar 

  • Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    Article  Google Scholar 

  • Chapin III FS, Matson PA, Vitousek P (2011) Principles of terrestrial ecosystem ecology. 2ed Edition. Springer, DOI: https://doi.org/10.1007/978-1-4419-9504-9

  • Chemidlin Prévost-Bouré N, Christen R, Dequiedt S, Mougel C, Lelièvre M, Jolivet C, Shahbazkia HR, Guillou L, Arrouays D, Ranjard L (2011) Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS One 6(9):e24166. https://doi.org/10.1371/journal.pone.0024166

    Article  Google Scholar 

  • Clarke KR, Ainsworth M (1993) A method of linking multivariate community structure to environmental variables. Mar Ecol Prog Ser 92:205–219. https://doi.org/10.3354/meps092205

    Article  Google Scholar 

  • Compton JE, Boone RD (2000) Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81(8):2314–2330.

  • Curlevski NJA, Xu ZH, Anderson IC, Cairney JWG (2010) Converting Australian tropical rainforest to native Araucariaceae plantations alters soil fungal communities. Soil Biol Biochem 42(1):14–20. https://doi.org/10.1016/j.soilbio.2009.08.001

    Article  CAS  Google Scholar 

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493

    Article  Google Scholar 

  • Dutta BG, Ghosh GR (1965) Soil fungi from orissa (India) IV. Soil fungi of paddy fields. Mycopathol Mycol Appl 25(3-4):316–322. https://doi.org/10.1007/BF02049919

    Article  CAS  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  Google Scholar 

  • Elíades L, Cabello M, Voget C (2006) Contribution to the study of alkalophilic and alkali-tolerant Ascomycota from Argentina. Darwin 44:64–73

    Google Scholar 

  • Grum-Grzhimaylo AA, Georgieva ML, Bondarenko SA, Debets AJM, Bilanenko EN (2016) On the diversity of fungi from soda soils. Fungal Divers 76(1):27–74. https://doi.org/10.1007/s13225-015-0320-2

    Article  Google Scholar 

  • Hanson CA (2016) microbial biogeography. In: International encyclopedia of geography: people, the earth, environment and technology. John Wiley & Sons, Ltd

  • Hao W-y, Yao H-q, Xu Y-r (1981) Investigation on ecological distribution of fungi in paddy soils. In: Proceedings of Symposium on Paddy Soils Springer Berlin Heidelberg, Berlin, Heidelberg, pp 323–329

  • Hu H-W, Zhang L-M, Yuan C-L, Zheng Y, Wang J-T, Chen D, He J-Z (2015a) The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance, and climatic factors. Front Microbiol 6:938

    Google Scholar 

  • Hu HW, Chen D, He JZ (2015b) Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiol Rev 39(5):729–749. https://doi.org/10.1093/femsre/fuv021

    Article  CAS  Google Scholar 

  • Hussain Q, Liu Y, Zhang A, Pan G, Li L, Zhang X, Song X, Cui L, Jin Z (2011) Variation of bacterial and fungal community structures in the rhizosphere of hybrid and standard rice cultivars and linkage to CO2 flux. FEMS Microbiol Ecol 78:116–128

    Article  CAS  Google Scholar 

  • Jiang Y, Liang Y, Li C, Wang F, Sui Y, Suvannang N, Zhou J, Sun B (2016) Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia. Soil Biol Biochem 95:250–261. https://doi.org/10.1016/j.soilbio.2016.01.007

    Article  CAS  Google Scholar 

  • Juniper S, Abbott L (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4(2):45–57. https://doi.org/10.1007/BF00204058

    Article  Google Scholar 

  • Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14

    Article  Google Scholar 

  • Kettler TA, Doran JW, Gilbert TL (2001) Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci Soc Am J 65(3):849–852. https://doi.org/10.2136/sssaj2001.653849x

    Article  CAS  Google Scholar 

  • Klaubauf S, Inselsbacher E, Zechmeister-Boltenstern S, Wanek W, Gottsberger R, Strauss J, Gorfer M (2010) Molecular diversity of fungal communities in agricultural soils from Lower Austria. Fungal Divers 44:65–75

    Article  Google Scholar 

  • Lüke C, Frenzel P, Ho A, Fiantis D, Schad P, Schneider B, Schwark L, Utami SR (2014) Macroecology of methane-oxidizing bacteria: the β-diversity of pmoA genotypes in tropical and subtropical rice paddies. Environ Microbiol 16(1):72–83. https://doi.org/10.1111/1462-2920.12190

    Article  Google Scholar 

  • Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40(9):2407–2415. https://doi.org/10.1016/j.soilbio.2008.05.021

    Article  CAS  Google Scholar 

  • Lee S-H, Kim C-G, Kang H (2011) Temporal dynamics of bacterial and fungal communities in a genetically modified (GM) rice ecosystem. Microb Ecol 61(3):646–659. https://doi.org/10.1007/s00248-010-9776-5

    Article  Google Scholar 

  • Leff B, Ramankutty N, Foley JA (2004) Geographic distribution of major crops across the world. Glob Biogeochem Cycles 18. doi: https://doi.org/10.1029/2003gb002108, 1

  • Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high-throughput sequencing of amplified markers—a user’s guide. New Phytol 199(1):288–299. https://doi.org/10.1111/nph.12243

    Article  CAS  Google Scholar 

  • Liu C, Ding N, Fu Q, Brookes PC, Xu J, Guo B, Lin Y, Li H, Li N (2016a) The influence of soil properties on the size and structure of bacterial and fungal communities along a paddy soil chronosequence. Eur J Soil Biol 76:9–18. https://doi.org/10.1016/j.ejsobi.2016.06.002

    Article  Google Scholar 

  • Liu Y, Wang P, Pan G, Crowley D, Li L, Zheng J, Zhang X, Zheng J (2016b) Functional and structural responses of bacterial and fungal communities from paddy fields following long-term rice cultivation. J Soils Sediments 16(5):1460–1471. https://doi.org/10.1007/s11368-015-1343-8

    Article  CAS  Google Scholar 

  • Liu Y, Zhou T, Crowley D, Li L, Liu D, Zheng J, Yu X, Pan G, Hussain Q, Zhang X, Zheng J (2012) Decline in topsoil microbial quotient, fungal abundance and C utilization efficiency of rice paddies under heavy metal pollution across South China. PLoS One 7(6):e38858. https://doi.org/10.1371/journal.pone.0038858

    Article  CAS  Google Scholar 

  • Lopes AR, Faria C, Prieto-Fernandez A, Trasar-Cepeda C, Manaia CM, Nunes OC (2011) Comparative study of the microbial diversity of bulk paddy soil of two rice fields subjected to organic and conventional farming. Soil Biol Biochem 43(1):115–125. https://doi.org/10.1016/j.soilbio.2010.09.021

    Article  CAS  Google Scholar 

  • Ma X, Liu M, Li Z (2016) Shifts in microbial biomass and community composition in subtropical paddy soils under a gradient of manure amendment. Biol Fertil Soils 52:775–787

    Article  Google Scholar 

  • May LA, Smiley B, Schmidt MG (2001) Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage. Can J Microbiol 47:829–841

    Article  CAS  Google Scholar 

  • Moll J, Hoppe B, König S, Wubet T, Buscot F, Krüger D (2016) Spatial distribution of fungal communities in an arable soil. PLoS One 11(2):e0148130. https://doi.org/10.1371/journal.pone.0148130

    Article  Google Scholar 

  • Nagai K, Sakai T, Rantiatmodjo RM, Suzuki K, Gams W, Okada G (1995) Studies on the distribution of alkalophilic and alkali-tolerant soil fungi I. Mycoscience 36(3):247–256. https://doi.org/10.1007/BF02268598

    Article  Google Scholar 

  • Nagai K, Suzuki K, Okada G (1998) Studies on the distribution of alkalophilic and alkali-tolerant soil fungi II: fungal flora in two limestone caves in Japan. Mycoscience 39:293

    Article  CAS  Google Scholar 

  • Newsham KK, Hopkins DW, Carvalhais LC, Fretwell PT, Rushton SP, Odonnell AG, Dennis PG (2016) Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat Clim Chang 6(2):182–186. https://doi.org/10.1038/nclimate2806

    Article  Google Scholar 

  • Nishizawa T, Zhaorigetu KM, Sato Y, Kaneko N, Ohta H (2010) Molecular characterization of fungal communities in non-tilled, cover-cropped upland rice field soils. Microbes Environ 25(3):204–210. https://doi.org/10.1264/jsme2.ME10108

    Article  Google Scholar 

  • O'Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71(9):5544–5550. https://doi.org/10.1128/AEM.71.9.5544-5550.2005

    Article  Google Scholar 

  • Pan F, Li Y, Chapman SJ, Yao H (2016) Effect of rice straw application on microbial community and activity in paddy soil under different water status. Environ Sci Pollut Res 23(6):5941–5948. https://doi.org/10.1007/s11356-015-5832-5

    Article  CAS  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig WG, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196. https://doi.org/10.1093/nar/gkm864

    Article  CAS  Google Scholar 

  • Ross DS, Bailey SW, Lawrence GB, Shanley JB, Fredriksen G, Jamison AE, Brousseau PA (2011) Near-surface soil carbon, carbon/nitrogen ratio, and tree species are tightly linked across northeastern United States watersheds. For Sci 57:460–469

    Google Scholar 

  • Schloss PD (2008) Evaluating different approaches that test whether microbial communities have the same structure. ISME J 2:265–275 311

    Article  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  CAS  Google Scholar 

  • Shi L-L, Mortimer PE, Ferry Slik JW, Zou X-M, Xu J, Feng W-T, Qiao L (2014) Variation in forest soil fungal diversity along a latitudinal gradient. Fungal Divers 64(1):305–315. https://doi.org/10.1007/s13225-013-0270-5

    Article  Google Scholar 

  • Smit E, Leeflang P, Glandorf B, van Elsas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65(6):2614–2621

    CAS  Google Scholar 

  • Solaiman MZ, Hirata H (1995) Effects of indigenous arbuscular mycorrhizal fungi in paddy fields on rice growth and N, P, K nutrition under different water regimes. Soil Sci Plant Nutr 41(3):505–514. https://doi.org/10.1080/00380768.1995.10419612

    Article  Google Scholar 

  • Somenahally AC, Hollister EB, Loeppert RH, Yan W, Gentry TJ (2011) Microbial communities in rice rhizosphere altered by intermittent and continuous flooding in fields with long-term arsenic application. Soil Biol Biochem 43(6):1220–1228. https://doi.org/10.1016/j.soilbio.2011.02.011

    Article  CAS  Google Scholar 

  • Stewart CN, Excoffier L (1996) Assessing population genetic structure and variability with RAPD data: application to Vaccinium macrocarpon (American Cranberry). J Evol Biol 9(2):153–171. https://doi.org/10.1046/j.1420-9101.1996.9020153.x

    Article  CAS  Google Scholar 

  • Taylor DL, Sinsabaugh RL (2015) The soil fungi: occurrence, phylogeny, and ecology. In: Paul E (ed) Soil microbiology, ecology, and biochemistry. 4th Edition. Academic Press, pp 77-100

  • Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson K-H, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, L-d G, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346(6212):1256688. https://doi.org/10.1126/science.1256688

    Article  Google Scholar 

  • Walker GM, White NA (2011) Introduction to fungal physiology. In: Kavanagh K (ed) Fungi: biology and applications, 2nd edn. John Wiley & Sons, Ltd, Chichester, pp 1–35. https://doi.org/10.1002/9781119976950.ch1

    Google Scholar 

  • Watanarojanaporn N, Boonkerd N, Tittabutr P, Longtonglang A, Young JPW, Teaumroong N (2013) Effect of Rice cultivation systems on indigenous arbuscular mycorrhizal fungal community structure. Microbes Environ 28(3):316–324. https://doi.org/10.1264/jsme2.ME13011

    Article  Google Scholar 

  • White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Witt C, Haefele SM (2005) Paddy soils. In: Daniel H (ed) Encyclopedia of soils in the environment. Elsevier, Oxford, pp 141–150. https://doi.org/10.1016/B0-12-348530-4/00286-1

    Chapter  Google Scholar 

  • Xu LH, Ravnskov S, Larsen J, Nilsson RH, Nicolaisen M (2012) Soil fungal community structure along a soil health gradient in pea fields examined using deep amplicon sequencing. Soil Biol Biochem 46:26–32. https://doi.org/10.1016/j.soilbio.2011.11.010

    Article  CAS  Google Scholar 

  • Yuan H, Ge T, Zhou P, Liu S, Roberts P, Zhu H, Zou Z, Tong C, Wu J (2013) Soil microbial biomass and bacterial and fungal community structures responses to long-term fertilization in paddy soils. J Soils Sediments 13(5):877–886. https://doi.org/10.1007/s11368-013-0664-8

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (41601239, 41322007), the China Postdoctoral Science Foundation (2016M600644), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15020201), the “Pearl River Talents” Postdoctoral Program of Guangdong Province, the National Key Research and Development Program of China (2016YFD0800703), and the High-level Leading Talent Introduction Program of GDAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hangwei Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Huaiying Yao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Zhang, L., Hu, H. et al. The biogeography of fungal communities in paddy soils is mainly driven by geographic distance. J Soils Sediments 18, 1795–1805 (2018). https://doi.org/10.1007/s11368-018-1924-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-018-1924-4

Keywords

Navigation