Skip to main content

Advertisement

Log in

Growth of comammox Nitrospira is inhibited by nitrification inhibitors in agricultural soils

Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The discovery of comammox Nitrospira being capable of complete oxidising ammonia to nitrate radically challenged the conventional concept of two-step nitrification. However, the response of comammox Nitrospira to nitrification inhibitors (NIs) and their role in soil nitrification remain largely unknown, which has hindered our ability to predict the efficiency of NIs in agroecosystems.

Materials and methods

We evaluated the effect of four NIs, 2-chloro-6-(trichloromethyl) pyridine (nitrapyrin), 3,4-dimethylpyrazole phosphate (DMPP), allylthiourea (ATU) and dicyandiamide (DCD) on the growth of comammox Nitrospira, ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB) in two pasture and arable soils.

Results and discussion

The amendment of nitrogen fertiliser significantly increased soil nitrate concentrations over time, indicating a sustaining nitrification activity in both soils. The addition of all the four NIs effectively reduced the production of nitrate in both soils, but to varying degrees during incubation. The abundances of comammox Nitrospira clade A were significantly increased by addition of nitrogen fertilisers and significantly impeded by the four NIs in the pasture soil, but their abundances were only remarkably hindered by nitrapyrin in the arable soil. All the four NIs obviously inhibited the AOB abundances in both soils. Except for DMPP, the other three NIs effectively suppressed the AOA abundances in both soils.

Conclusions

We provided new evidence that growth of comammox Nitrospira clade A can be stimulated by nitrogen fertilisers and inhibited by various nitrification inhibitors, suggesting their potential role in nitrification of agricultural soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bartelme RP, McLellan SL, Newton RJ (2017) Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of ammonia-oxidizing archaea and comammox Nitrospira. Front Microbiol 8:101

    Article  Google Scholar 

  • Beach NK, Noguera DR (2019) Design and assessment of species-level qPCR primers targeting comammox. Front Microbiol 10:35

    Article  Google Scholar 

  • Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509

    Article  CAS  Google Scholar 

  • Di H, Cameron K (2012) How does the application of different nitrification inhibitors affect nitrous oxide emissions and nitrate leaching from cow urine in grazed pastures? Soil Use Manag 28:54–61

    Article  Google Scholar 

  • Di H, Cameron K, Shen JP, Winefield C, O’Callaghan M, Bowatte S, He J (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci 2:621–624

    Article  CAS  Google Scholar 

  • Dinnes DL, Karlen DL, Jaynes DB, Kaspar TC, Hatfield JL, Colvin TS, Cambardella CA (2002) Nitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soils. Agron J 94:153–171

    Article  Google Scholar 

  • Fowler SJ, Palomo A, Dechesne A, Mines PD, Smets BF (2018) Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. Environ Microbiol 20:1002–1015

    Article  CAS  Google Scholar 

  • Gerland P, Raftery AE, Ševčíková H, Li N, Gu D, Spoorenberg T, Alkema L, Fosdick BK, Chunn J, Lalic N (2014) World population stabilization unlikely this century. Science 346:234–237

    Article  CAS  Google Scholar 

  • Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  CAS  Google Scholar 

  • He JZ, Hu HW, Zhang LM (2012) Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biol Biochem 55:146–154

    Article  CAS  Google Scholar 

  • Hu HW, He JZ (2017) Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle. J Soils Sediments 17:2709–2717

    Article  CAS  Google Scholar 

  • Hu HW, Macdonald CA, Trivedi P, Holmes B, Bodrossy L, He JZ, Singh BK (2015) Water addition regulates the metabolic activity of ammonia oxidizers responding to environmental pertubation in dry subhumid ecosystems. Environ Microbiol 17:444–461

    Article  CAS  Google Scholar 

  • Hu HW, Xu ZH, He JZ (2014) Ammonia-oxidizing archaea play a predominant role in acidic soil nitrification. Adv Agron 125:261–302

    Article  Google Scholar 

  • Jia Z, Conrad R (2009) Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11:1658–1671

    Article  CAS  Google Scholar 

  • Kits KD, Sedlacek CJ, Lebedeva EV et al (2017) Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 54:269–272

    Article  Google Scholar 

  • Koch H, van Kessel MA, Lücker S (2019) Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Appl Microbiol Biotechnol 103:177–189

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  • Lehtovirta-Morley LE, Verhamme DT, Nicol GW, Prosser JI (2013) Effect of nitrification inhibitors on the growth and activity of Nitrosotalea devanaterra in culture and soil. Soil Biol Biochem 62:129–133

    Article  CAS  Google Scholar 

  • Li Y, Chapman SJ, Nicol GW, Yao H (2018) Nitrification and nitrifiers in acidic soils. Soil Biol Biochem 116:290–301

    Article  CAS  Google Scholar 

  • Offre P, Prosser JI, Nicol GW (2009) Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS Microbiol Ecol 70:99–108

    Article  CAS  Google Scholar 

  • Palomo A, Pedersen AG, Fowler SJ, Dechesne A, Sicheritz-Ponten T, Smets BF (2018) Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME J 12:1779–1793

    Article  Google Scholar 

  • Pjevac P, Schauberger C, Poghosyan L, Herbold CW, van Kessel MA, Daebeler A, Steinberger M, Jetten MS, Lücker S, Wagner M (2017) AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front Microbiol 8:1508

    Article  Google Scholar 

  • Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531

    Article  CAS  Google Scholar 

  • Roco MM, Blu RO (2006) Evaluation of the nitrification inhibitor 3, 4-dimethylpyrazole phosphate in two Chilean soils. J Plant Nutr 29:521–534

    Article  CAS  Google Scholar 

  • Shen T, Stieglmeier M, Dai J, Urich T, Schleper C (2013) Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiol Lett 344:121–129

    Article  CAS  Google Scholar 

  • Shi X, Hu HW, He JZ, Chen D, Suter HC (2016a) Effects of 3, 4-dimethylpyrazole phosphate (DMPP) on nitrification and the abundance and community composition of soil ammonia oxidizers in three land uses. Biol Fertil Soils 52:927–939

    Article  CAS  Google Scholar 

  • Shi X, Hu HW, Müller C, He JZ, Chen D, Suter HC (2016b) Effects of the nitrification inhibitor 3, 4-dimethylpyrazole phosphate on nitrification and nitrifiers in two contrasting agricultural soils. Appl Environ Microbiol 82:5236–5248

    Article  CAS  Google Scholar 

  • Shi X, Hu HW, Wang J, He JZ, Zheng C, Wan X, Huang Z (2018) Niche separation of comammox Nitrospira and canonical ammonia oxidizers in an acidic subtropical forest soil under long-term nitrogen deposition. Soil Biol Biochem 126:114–122

    Article  CAS  Google Scholar 

  • Shi X, Hu HW, Zhu-Barker X, Hayden H, Wang J, Suter H, Chen D, He JZ (2017) Nitrifier-induced denitrification is an important source of soil nitrous oxide and can be inhibited by a nitrification inhibitor 3, 4-dimethylpyrazole phosphate. Environ Microbiol 19:4851–4865

    Article  CAS  Google Scholar 

  • Subbarao G, Ito O, Sahrawat K, Berry W, Nakahara K, Ishikawa T, Watanabe T, Suenaga K, Rondon M, Rao IM (2006) Scope and strategies for regulation of nitrification in agricultural systems—challenges and opportunities. Crit Rev Plant Sci 25:303–335

    Article  CAS  Google Scholar 

  • Subbarao G, Nakahara K, Hurtado MP, Ono H, Moreta D, Salcedo AF, Yoshihashi A, Ishikawa T, Ishitani M, Ohnishi-Kameyama M (2009) Evidence for biological nitrification inhibition in Brachiaria pastures. Proc Natl Acad Sci 106:17302–17307

    Article  CAS  Google Scholar 

  • van Kessel MA, Speth DR, Albertsen M, Nielsen PH, den Camp HJO, Kartal B, Jetten MS, Lücker S (2015) Complete nitrification by a single microorganism. Nature 528:555–559

    Article  Google Scholar 

  • Wang YY, Cheng YH, Chen KE, Tsay YF (2018a) Nitrate transport, signaling, and use efficiency. Annu Rev Plant Biol 69:85–122

    Article  CAS  Google Scholar 

  • Wang YF, Gu JD (2014) Effects of allylthiourea, salinity, and pH on ammonia/ammonium-oxidizing prokaryotes in mangrove sediment incubated in laboratory microcosms. Appl Microbiol Biotechnol 98:3257–3274

    Article  CAS  Google Scholar 

  • Wang M, Huang G, Zhao Z, Dang C, Liu W, Zheng M (2018b) Newly designed primer pair revealed dominant and diverse comammox amoA gene in full-scale wastewater treatment plants. Bioresour Technol 270:580–587

    Article  CAS  Google Scholar 

  • Zhang LM, Hu HW, Shen JP, He JZ (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. The ISME J 6:1032–1045

    Article  CAS  Google Scholar 

  • Zhang S, Zheng Q, Noll L, Hu Y, Wanek W (2019) Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate soil gross N mineralization. Soil Biol Biochem 135:304–315

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Australian Research Council (DP160101028, LP160101134). The authors would like to thank Ms. Zhenzhen Yan and Dr. Bing Han for their assistance with soil sampling and Mrs. Qing Xie for her help during the incubation trial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Zheng He.

Additional information

Responsible editor: Huaiying Yao

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Hu, HW., Chen, QL. et al. Growth of comammox Nitrospira is inhibited by nitrification inhibitors in agricultural soils. J Soils Sediments 20, 621–628 (2020). https://doi.org/10.1007/s11368-019-02442-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-019-02442-z

Keywords

Navigation