Skip to main content
Log in

Pharmacological effect of carvacrol on d-galactosamine-induced mitochondrial enzymes and DNA damage by single-cell gel electrophoresis

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The present study aimed at investigating the effect of carvacrol on hepatic mitochondrial enzyme activities and DNA damage in d-galactosamine (d-GalN)-induced hepatotoxicity in male albino Wistar rats. The activities of hepatic mitochondrial enzymes such as isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, NADPH dehydrogenase and cytochrome c oxidase significantly decreased in d-GalN-hepatotoxic rats, and administration of carvacrol brought these parameters towards normality. In d-GalN-hepatotoxic rats, the hepatic mitochondrial concentration of thiobarbituric acid reactive substances significantly increased, and administration of carvacrol significantly reduced them towards normality. Furthermore, the activities of enzymatic antioxidants such as superoxide dismutase and glutathione peroxidase and the levels of non-enzymatic antioxidants such as vitamin C, vitamin E and reduced glutathione decreased significantly in the liver mitochondria. Administration of carvacrol returned the enzymatic and non-enzymatic antioxidants towards normality. d-GalN-hepatotoxic rats had increased DNA damage, which administration of carvacrol significantly decreased. These results suggest that carvacrol has liver mitochondrial antioxidant properties and possesses a defensive effect against mitochondrial enzymes and DNA damage in d-GalN-induced rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hwang JM, Tseng TH, Tsai YY, Lee HJ, Chou FP, Wang CJ, Chu CY (2005) Protective effects of baicalein on tert-butyl hydroperoxide-induced hepatic toxicity in rat hepatocytes. J Biomed Sci 12:389–397

    Article  PubMed  CAS  Google Scholar 

  2. Decker K, Keppler D (1972) Galactosamine induced liver injury. In: Popper H, Schaffner F (eds) Progress in liver disease, vol 4. Grune and Stratton, New York, pp 183–199

    Google Scholar 

  3. Sakaguchi S, Yokota K (1995) Role of Ca2+ on endotoxin-sensitivity by galactosamine challenge: lipid peroxide formation and hepatotoxicity in zymosan primed mice. Pharmacol Toxicol 77:81–86

    Article  PubMed  CAS  Google Scholar 

  4. Luft R (1995) The development of mitochondrial medicine. Biochim Biophys Acta 1271:1–6

    PubMed  CAS  Google Scholar 

  5. Luft R, Landau BR (1995) Mitochondrial medicine. J Intern Med 238:405–421

    Article  PubMed  CAS  Google Scholar 

  6. Wallace DC (1992) Mitochondrial genetics: a paradigm for aging and degenerative diseases. Science 256:628–632

    Article  PubMed  CAS  Google Scholar 

  7. Zargari A (1990) Medicinal plants, 4th edn. Tehran University Publications, Tehran, pp 42–45

    Google Scholar 

  8. Kirimer N, Baser KHC, Tumen G (1995) Carvacrol rich plants in Turkey. Chem Nat Compd 31:37–42

    Article  Google Scholar 

  9. Lagouri V, Bleskas G, Tsimidou M, Kokkini S, Boskou D (1993) Composition and antioxidant activity of essential oils from oregano plants grown wild in Greece. Z Lebens Unter und Fors 197:20–23

    Article  CAS  Google Scholar 

  10. Fenaroli G (2002) Fenaroli’s handbook of flavor ingredients, 4th edn. CRC Press, Boca Raton

    Google Scholar 

  11. Aristatile B, Al-Numair KS, Veeramani C, Pugalendi KV (2009) Effect of carvacrol on hepatic marker enzymes and antioxidant status in d-galactosamine induced-hepatotoxicity in rats. Fundam Clin Pharmacol 23:757–765

    Article  PubMed  CAS  Google Scholar 

  12. Hajhashemi V, Ghannadi A, Pezeshkian SK (2002) Antinociceptive and anti-inflammatory effects of Satureja hortensis L. extracts and essential oil. J Ethnopharmacol 82:83–87

    Article  PubMed  Google Scholar 

  13. Yanishlieva NV, Marinova E, Gordon MH, Reneva VG (1999) Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem 64:59–66

    Article  CAS  Google Scholar 

  14. Evangelou G, Karkaponnas KS, Liasko R, Nonni A, Stefanou D, Kallistratos G (1997) Dose-related preventive and therapeutic effects of antioxidants–anticarcinogenesis on experimentally induced malignant tumors in Wistar rats. Cancer Lett 115:101–105

    Article  Google Scholar 

  15. Shelef LA (1983) Antimicrobial effects of spices. J Food Saf 6:29–44

    Article  Google Scholar 

  16. Aligiannis N, Kalpoutzakis E, Mitaki S, Chinou IB (2001) Composition and antimicrobial activity of the essential oil of two Organum species. J Agric Food Chem 49:4168–4170

    Article  PubMed  CAS  Google Scholar 

  17. Sokmen W, Serkedjieva J, Daferera D, Gulluce M, Polissiou M, Tepe B, Akpular HA, Sahin Sokmen FA (2004) In vitro antioxidant, antimicrobial and antiviral activities of the essential oil and various extracts from herbal parts and callus cultures of Origanum acutidens. J Agric Food Chem 52:3309–3312

    Article  PubMed  Google Scholar 

  18. Knowles JR, Roller S (2001) Efficacy of chitosan, carvacrol and a hydrogen peroxide-based biocide against food borne microorganisms in suspension and adhered to stainless steel. J Food Prot 64:1542–1548

    PubMed  CAS  Google Scholar 

  19. Knowles JR, Roller S, Murray DB, Naidu AS (2005) Antimicrobial action of carvacrol at different stages of dual-species biofilm development by Staphylococcus aureus and Salmonella typhimurium. Appl Environ Microbiol 71:797–803

    Article  PubMed  CAS  Google Scholar 

  20. Johnson D, Lardy H (1981) Isolation of liver or kidney mitochondria. In: Methods in enzymology. Academic Press, London, pp 94–96

  21. Bell JL, Baron DN (1960) A colorimetric method for determination of isocitrate dehydrogenase. Clin Chem Acta 5:740–747

    Article  CAS  Google Scholar 

  22. Reed LJ, Mukherjee RB (1969) α-Ketoglutarate dehydrogenase complex from Escherichia coli. In: Colowick SP, Kaplon NO (eds) Methods in enzymology, vol 13. Academic Press, New York, pp 53–61

    Google Scholar 

  23. Slater EC, Bonner WDJ (1952) The effect of fluoride on succinic oxidase system. Biochemistry 52:185–195

    CAS  Google Scholar 

  24. Mehler AH, Kornberg A, Grisolia S, Ochoa S (1948) The enzymatic mechanism of oxidation-reductions between malate or isocitrate and pyruvate. J Biol Chem 174:961–977

    PubMed  CAS  Google Scholar 

  25. Pearl W, Cascarano J, Zweifach BW (1963) Microdetermination of cytochrome oxidase in rat tissues by the oxidation of N-phenyl-p-phenylene diamine or ascorbic acid. J Histochem Cytochem 2:102–104

    Article  Google Scholar 

  26. Minakami S, Ringler RL, Singer TP (1962) Studies on the respiratory chain-linked dihydrodiphosphopyridine nucleotide dehydrogenase. I. Assay of the enzyme in particulate and in soluble preparation. J Biol Chem 237:569–576

    PubMed  CAS  Google Scholar 

  27. Niehaus WG, Samuelson B (1968) Formation of malondialdehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem 6:126–130

    Article  PubMed  CAS  Google Scholar 

  28. Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase (SOD). Ind J Biochem Biophys 21:130–132

    CAS  Google Scholar 

  29. Rotruck JJ, Pope AL, Ganther HE, Swanson AB (1973) Selenium: biochemical rates as a component of glutathione peroxidase. Science 179:588–590

    Article  PubMed  CAS  Google Scholar 

  30. Ellman GL (1959) Tissue sulphydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  31. Roe JH, Kuether CA (1943) The determination of ascorbic acid in whole blood and urine through the 2,4-dinitrophenylhydrazine derivative of dehydroascorbic acid. J Biol Chem 11:145–164

    Google Scholar 

  32. Baker H, Frank O, De Angelis B, Feingold S (1980) Plasma tocopherol in man at various times after ingesting free or acetylated tocopherol. Nutr Rep Int 21:531–536

    CAS  Google Scholar 

  33. Boyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Sci J Clin Lab Invest 21(97):77–89

    CAS  Google Scholar 

  34. Santhosh A, Mathew S, Sudhakaran PR (1996) Synthesis of sulphated proteoglycans by primary cultures of rat hepatocyte modulation by matrix substratum. Mol Cell Biochem 165(1):1–7

    Article  PubMed  CAS  Google Scholar 

  35. Singh NP, McCoy MT, Schneider EL (1988) A simple technique for quantization of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191

    Article  PubMed  CAS  Google Scholar 

  36. Keppler D, Lesch R, Reutter W, Decker K (1968) Experimental hepatitis induced by d-galactosamine. Exp Mol Pathol 9:279–290

    Article  PubMed  CAS  Google Scholar 

  37. Decker K, Keppler D (1972) Galactosamine-induced liver injury. In: Popper H, Schaffner F (eds) Progress in liver disease, vol 4. Grune and Stratton, New York, pp 183–196

    Google Scholar 

  38. Martin P, Friedman LS (1992) Assessment of liver function and diagnostic studies. In: Friedman LS, Keeffe EB (eds) Handbook of liver disease. Churchill Livingstone, Philadelphia, pp 1–14

    Google Scholar 

  39. Bailey SM, Cunningham CC (2002) Contribution of mitochondria to oxidative stress associated with alcoholic liver disease. Free Radic Biol Med 32(1):11–16

    Article  PubMed  CAS  Google Scholar 

  40. Puzziferri L, Signorile A, Guerrieri F, Papa S, Cuomo V, Steardo L (2000) Chronic low dose ethanol intake: biochemical characterization of liver mitochondria in rats. Life Sci 66(6):477–484

    Article  PubMed  CAS  Google Scholar 

  41. Schrauwen P, Hesselink MKC (2004) Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes 53:1412–1417

    Article  PubMed  CAS  Google Scholar 

  42. Enns GM (2003) The contribution of mitochondria to common disorders. Mol Genet Metab 80:11–26

    Article  PubMed  CAS  Google Scholar 

  43. Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 91(23):10771–10778

    Article  PubMed  CAS  Google Scholar 

  44. Gao J, Tang X, Dou H, Fan Y, Zhao X, Xu Q (2004) Hepatoprotective activity of Terminalia catappa L. leaves and its two triterpenoids. J Pharm Pharmacol 56(11):1449–1455

    Article  PubMed  CAS  Google Scholar 

  45. Fernandez-Checa JC, Kaplowitz N, Garcia Ruiz C, Colell A, Miranda M, Mari M, Ardite E, Morales A (1997) GSH transport in mitochondria: defense against TNF-induced oxidative stress and alcohol-induced defect. Am J Physiol 273:G7–G17

    PubMed  CAS  Google Scholar 

  46. Andersson BS, Rundgren M, Nelson SD, Harder S (1990) N-Acetyl-p-benzoquinone imine-induced changes in the energy metabolism in hepatocytes. Chem Biol Interact 75:201–211

    Article  PubMed  CAS  Google Scholar 

  47. Aeschbach R, Loliger J, Scott BC, Murcia A, Butler J, Halliwell B, Aruoma OI (1994) Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem Toxicol 32:31–36

    Article  PubMed  CAS  Google Scholar 

  48. Blasiak J, Kowalik J (2001) Protective action of vitamin C against DNA damage induced by selenium-cisplatin conjugate. Acta Biochim Pol 48:233–240

    PubMed  CAS  Google Scholar 

  49. Aristatile B, Al-Numair KS, Veeramani C (2010) Protective effect of carvacrol on oxidative stress and cellular DNA damage induced by UVB irradiation in human peripheral lymphocytes. J Biochem Mol Toxicol (in press). DOI: 10.1002/jbt.20355

  50. Yu TW, Anderson D (1997) Reactive oxygen species-induced DNA damage and its modification: a chemical investigation. Mutat Res 379:201–210

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors report no conflict of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kodukkur Viswanathan Pugalendi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aristatile, B., Al-Numair, K.S., Al-Assaf, A.H. et al. Pharmacological effect of carvacrol on d-galactosamine-induced mitochondrial enzymes and DNA damage by single-cell gel electrophoresis. J Nat Med 65, 568–577 (2011). https://doi.org/10.1007/s11418-011-0544-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-011-0544-8

Keywords

Navigation