Skip to main content
Log in

The phenolic acids from Oplopanax elatus Nakai stems and their potential photo-damage prevention activity

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

25 phenolic acids, including four new isolates, eurylophenosides A–D (14) and 21 known ones (525) were isolated and identified from the stems of Oplopanax elatus Nakai. Among the known compounds 59, 1113, 16, 1825 were isolated from the genus for the first time; 17 was first obtained from the plant; and the NMR data of 22 was reported here first. Meanwhile, the UVB-induced photodamage model of HaCaT cells was used to study the prevent-photodamage abilities of compounds 12, 48, 1113 and 1525 with a nontoxic concentration at 50 μM. Moreover, a dose-dependent experiment was conducted for active compounds at the concentration of 10, 25, and 50 µM, respectively. Consequently, pretreatment with compounds 1, 16, 17, 19, 20, 22, 24 and 25 could suppress the cell viability decreasing induced by UVB irradiation in a concentration-dependent manner. These results indicated that phenolic acids were one kind of material basis with prevent-photodamage activity of O. elatus.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Murata K, Oyama M, Ogata M, Fujita N, Takahashi R (2021) Oral administration of Jumihaidokuto inhibits UVB-induced skin damage and prostaglandin E2 production in HR-1 hairless mice. J Nat Med 75:142–155

    Article  CAS  PubMed  Google Scholar 

  2. Yuan XY, Pang XW, Zhang GQ, Guo JY (2017) Salidroside’s protection against UVB-mediated oxidative damage and apoptosis is associated with the upregulation of Nrf2 expression. Photomed Laser Surg 35:49–56

    Article  CAS  PubMed  Google Scholar 

  3. Oh Y, Lim HW, Huang YH, Kwon HS, Jin CD, Kim K, Lim CJ (2016) Attenuating properties of Agastache rugosa leaf extract against ultraviolet-B-induced photoaging via up-regulating glutathione and superoxide dismutase in a human keratinocyte cell line. J Photochem Photobiol B 163:170–176

    Article  CAS  PubMed  Google Scholar 

  4. Luo D, Min W, Lin XF, Wang SK (2003) Experimental study of photo-protection of hydroxychloroquine and TCMs on human keratinocytes damaged from ultraviolet irradiation. Zhongguo Meirong Yixue 12:355–358

    Google Scholar 

  5. Zhang HG, Liu SY, Fu AH, Xu SM (1999) Chemical constituents of essential oil in stem of Oplopanax elatus and their antifungal action. Zhongguo Yaoxue Zazhi 34:369–371

    CAS  Google Scholar 

  6. Mi HM, Li CG, Su ZW, Wang NP, Zhao JX, Jiang YG (1987) Studies on chemical constituents and antifungal activities of essential oil from Oplopanax elatus Nakai. Yaoxue Xuebao 22:549–552

    CAS  Google Scholar 

  7. Yang MC, Kwon HC, Kim YJ, Lee KR, Yang HO (2010) Oploxynes A and B, polyacetylenes from the stems of Oplopanax elatus. J Nat Prod 73:801–805

    Article  CAS  PubMed  Google Scholar 

  8. Qu SY, Jiang XL, Wu YJ, Wang YH (1986) Anti-inflammatory effect of tall oplopanax (Oplopanax elatus) oil. Zhongcaoyao 17:25–26

    Google Scholar 

  9. Brainina KhZ, Ivanova AV, Sharafutdinova EN, Lozovskaya EL, Shkarina EI (2007) Potentiometry as a method of antioxidant activity investigation. Talanta 71:13–18

    Article  CAS  PubMed  Google Scholar 

  10. Qiao X, Sun W, Wang C, Zhang L, Li P, Wen X, Yang J, Yuan C (2017) Polyyne-enriched extract from Oplopanax elatus significantly ameliorates the progression of colon carcinogenesis in ApcMin/+ mice. Molecules 22:E1593

    Article  PubMed  Google Scholar 

  11. Wang J, Shao L, Wang CZ, Zhou HH, Yuan CS, Huang WH (2019) Synergetic inhibition of human colorectal cancer cells by combining polyyne-enriched fraction from Oplopanax elatus and irinotecan. Nutr Cancer 71:472–482

    Article  CAS  PubMed  Google Scholar 

  12. Guo R, Wang Y, Shi Y, Li X, Li W, Long C (2012) Chemical constituents from the stems of Dipteronia dyeriana Henry. Tianran Chanwu Yanjiu Yu Kaifa 24:1007–1013

    CAS  Google Scholar 

  13. Qu L, Li X, Chen Y, Deng S, Wu Y, Wang T, Zhang Y (2014) Phenolic constituents from the stems of Spatholobus suberectus Dunn. Redai Yaredai Zhiwu Xuebao 22:301–306

    CAS  Google Scholar 

  14. Miyagawa Y, MizukamiI T, Kamitakahara H, Takano T (2014) Synthesis and fundamental HSQC NMR data of monolignol β-glycosides, dihydromonolignol β-glycosides and p-hydroxybenzaldehyde derivative β-glycosides for the analysis of phenyl glycoside type lignin-carbohydrate complexes (LCCs). Holzforschung 68:747–760

    Article  CAS  Google Scholar 

  15. Shang Y, Shi R (2016) Phenolic glycosides from the fruits of Illicium verum. Zhongchengyao 38:107–110

    CAS  Google Scholar 

  16. Wang Z, Tan X, Ma T, Chen X, Bi K (2008) Isolation and identification of chemical constituents from Artemisia capillaries Thunb. Shenyang Yaoke Daxue Xuebao 25:781–784

    CAS  Google Scholar 

  17. Wolfram K, Schmidt J, Wray V, Milkowski C, Schliemann W, Strack D (2010) Profiling of phenylpropanoids in transgenic low-sinapine oilseed rape (Brassica napus). Phytochemistry 71:1076–1084

    Article  CAS  PubMed  Google Scholar 

  18. Dai Z, Wang G, Lin R (2006) Chemical constituents of Balanophora simaoensis (III). Zhongcaoyao 37:1608–1610

    CAS  Google Scholar 

  19. Monteiro MCM, Leptokarydis IH, Silva GH, Silva VC, Bolzani VS, Young MCM, Lopes MN (2007) Constituintes químicos isolados dos caules de Michelia champaca L. (Magnoliaceae). Eclét Quím São Paulo 32:13–18

    Article  CAS  Google Scholar 

  20. Terashima BN, Ralph SA, Landucci LL (1995) New facile syntheses of monolignols glucosides; p-glucocoumaryl alcohol, coniferin and syringin. Holzforschung 50:55–155

    Google Scholar 

  21. Liu J, Li C, Yang J, Ma J, Zhang D (2016) Chemical constituents from stems of Clausena lansium. Zhongcaoyao 47:32–37

    CAS  Google Scholar 

  22. Gan M, Zhu C, Zhang Y, Zi J, Song W, Yang Y, Shi J (2010) Constituents from a water-soluble portion of ethanolic extract of Iodes cirrhosa. Zhongguo Zhongyao Zazhi 35:456–467

    CAS  PubMed  Google Scholar 

  23. Huang WH, Zhang QW, Meng LZ, Yuan CS, Wang CZ, Li SP (2011) Oplopanphesides A-C, three new phenolic glycosides from the root barks of Oplopanax horridus. Chem Pharm Bull 59:676–679

    Article  CAS  Google Scholar 

  24. Reiko N, Hiroe K, Nobuji N, Hisashi H (1996) Antioxidative activity of constituents from fennel seeds. J Home Econ Jpn 47:1193–1199

    Google Scholar 

  25. Shimoda K, Kondo Y, Nishida T (2006) Biotransformation of thymol, carvacrol, and eugenol by cultured cells of Eucalyptus perriniana. Phytochemistry 67:2256–2261

    Article  CAS  PubMed  Google Scholar 

  26. Li S, Hu L, Lou F (2004) Study on the chemical constituents of Saussurea lappa. Zhongguo Tianran Yaowu 2:63–65

    Google Scholar 

  27. Wang F (2010) Studies on the water soluble chemical constituents and quality specification of Dendrobium candidum. Chinese Medical Sciences and Peking Union Medical College Hospital

    Google Scholar 

  28. Marinos VA, Tate ME, Williams PJ (1992) Lignan and phenylpropanoid glycerol glucosides in wine. Phytochemistry 31:4307–4312

    Article  CAS  Google Scholar 

  29. Jones L, Bartholomew B, Latif Z, Sarker SD, Nash RJ (2000) Constituents of Cassia laevigata. Fitoterapia 71:580–583

    Article  CAS  PubMed  Google Scholar 

  30. Tian E, Yang G, Mei Z, Chen Y (2014) Chemical constituents from stems of Glycosmis pentaphylla. Zhongcaoyao 45:1358–1362

    CAS  Google Scholar 

  31. Wang L, Li F, Yang CY, Khan AA, Liu X, Wang MK (2014) Neolignans, lignans and glycoside from the fruits of Melia toosendan. Fitoterapia 99:92–98

    Article  CAS  PubMed  Google Scholar 

  32. Zhang T, Wu J, An N, Zhao D, Zhang C, Li B, Zhang X (2015) Isolation and structural identification of the phenylpropanoids from Drypetes hainanensis Merr. Zhongguo Yaowu Huaxue Zazhi 25:393–396

    CAS  Google Scholar 

  33. Qu L, Wang J, Ruan J, Yao X, Huang P, Wang Y, Yu H, Han L, Zhang Y, Wang T (2018) Spirostane-type saponins obtained from Yucca schidigera. Molecules 23:E167

    Article  PubMed  Google Scholar 

  34. Ruan J, Li Z, Zhang Y, Chen Y, Liu M, Han L, Zhang Y, Wang T (2019) Bioactive constituents from the roots of Eurycoma longifolia. Molecules 24:E3157

    Article  PubMed  Google Scholar 

  35. Yanagisawa IM (1998) Synthesis, separation and NMR spectral analysis of methyl apiofuranosides. Carbohydr Res 313:189–192

    Article  Google Scholar 

  36. Yuan S, Yang M, Zhao Y (2012) A new flavonol glycoside from glandless cotton seeds. Acta Pharm Sin B 2:42–45

    Article  CAS  Google Scholar 

  37. Otto L (1980) Synthesis of coniferyl and dihydroconiferyl derivatives using radical bromination with N-bromosuccinimide as the key step. Acta Chem Scand 34b:15–20

    Article  Google Scholar 

  38. Ngan NT, Quang TH, Tai BH, Song SB, Lee D, Kim YH (2012) Anti-inflammatory and PPAR transactivational effects of components from the stem bark of Ginkgo biloba. Agric Food Chem 60:2815–2824

    Article  CAS  Google Scholar 

  39. Kim SB, Kim JE, Kang OH, Mun SH, Seo YS, Kang DH, Yang DW, Ryu SY, Lee YM, Kwon DY (2015) Protective effect of ixerisoside A against UVB-induced pro-inflammatory cytokine production in human keratinocytes. Int J Mol Med 35:1411–1418

    Article  CAS  PubMed  Google Scholar 

  40. Oliveira MM, Daré RG, Barizão ÉO, Visentainer JV, Romagnolo MB, Nakamura CV, Truiti MDCT (2018) Photodamage attenuating potential of Nectandra hihua against UVB-induced oxidative stress in L929 fibroblasts. J Photochem Photobiol B 181:127–133

    Article  PubMed  Google Scholar 

  41. Souza R, Assis GD, Alves D, Luiza A, Fonseca V (2017) Byrsonima crassifolia extract and fraction prevent UVB-induced oxidative stress in keratinocytes culture and increase antioxidant activity on skin. Ind Crop Prod 108:485–494

    Article  Google Scholar 

  42. Yahfoufi N, Alsadi N, Jambi M, Matar C (2018) The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 10:1618

    Article  PubMed Central  Google Scholar 

  43. Solovchenko AE, Merzlyak MN (2008) Screening visible and UV radiation as a protective mechanism in plants. Russ J Plant Physiol 55:803–822

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Programs for National Natural Science Foundation of China (82074118), Important Drug Development Fund, Ministry of Science and Technology of China (2018ZX09735002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Zhang or Tao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3058 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Cheng, D., Hao, M. et al. The phenolic acids from Oplopanax elatus Nakai stems and their potential photo-damage prevention activity. J Nat Med 76, 39–48 (2022). https://doi.org/10.1007/s11418-021-01546-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-021-01546-6

Keywords

Navigation