Skip to main content
Log in

Manipulating active layer morphology of molecular donor/polymer acceptor based organic solar cells through ternary blends

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The development of molecular donor/polymer acceptor blend (MD/PA)-type organic solar cells (OSCs) lags far behind other type OSCs. It is due to the large-size phase separation morphology of MD/PA blend, which results from the high crystallinity of molecular donors. In this article, to suppress the crystallinity of molecular donors, we use ternary blends to develop OSCs based on one polymer acceptor (P-BNBP-fBT) and two molecular donors (DR3TBDTT and BTR) with similar chemical structures. The ternary OSC exhibits a power conversion efficiency (PCE) of 4.85%, which is higher than those of the binary OSCs (PCE=3.60% or 3.86%). To our best knowledge, it is the first report of ternary MD/PA-type OSCs and this PCE is among the highest for MD/PA-type OSCs reported so far. Compared with the binary blends, the ternary blend exhibits decreased crystalline size and improved face-on orientation of the donors. As a result, the ternary blend exhibits improved and balanced charge mobilities, suppressed charge recombination and increased donor/acceptor interfacial areas, which leads to the higher short-circuit current density. These results suggest that using ternary blend is an effective strategy to manipulate active layer morphology and enhance photovoltaic performance of MD/PA-type OSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789–1791

    Article  CAS  Google Scholar 

  2. Li G, Zhu R, Yang Y. Nat Photon, 2012, 6: 153–161

    Article  CAS  Google Scholar 

  3. Li ZG, Zhao XY, Lu X, Gao ZQ, Mi BX, Huang W. Sci China Chem, 2012, 55: 553–578

    Article  CAS  Google Scholar 

  4. Hu Z, Ying L, Huang F, Cao Y. Sci China Chem, 2017, 60: 571–582

    Article  CAS  Google Scholar 

  5. Kim T, Kim JH, Kang TE, Lee C, Kang H, Shin M, Wang C, Ma B, Jeong U, Kim TS, Kim BJ. Nat Commun, 2015, 6: 8547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang ZG, Li Y. Sci China Chem, 2015, 58: 192–209

    Article  CAS  Google Scholar 

  7. Zhao W, Zhang S, Hou J. Sci China Chem, 2016, 59: 1574–1582

    Article  CAS  Google Scholar 

  8. Zhao Y, Zou W, Li H, Lu K, Yan W, Wei Z. Chin J Polym Sci, 2017, 35: 261–268

    Article  CAS  Google Scholar 

  9. Li YQ, Wang QK, Ou QD, Tang JX. Sci China Chem, 2016, 59: 422–435

    Article  CAS  Google Scholar 

  10. Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X. Nat Rev Mater, 2018, 3: 18003

    Article  CAS  Google Scholar 

  11. Cheng P, Li G, Zhan X, Yang Y. Nat Photon, 2018, 12: 131–142

    Article  CAS  Google Scholar 

  12. Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174

    Article  CAS  PubMed  Google Scholar 

  13. Jia J, Zheng N, Wang Z, Huang Y, Duan C, Huang F, Cao Y. Sci China Chem, 2017, 60: 1458–1467

    Article  CAS  Google Scholar 

  14. Zhang H, Liu Y, Sun Y, Li M, Ni W, Zhang Q, Wan X, Chen Y. Sci China Chem, 2017, 60: 366–369

    Article  CAS  Google Scholar 

  15. Zhang X, Yao J, Zhan C. Sci China Chem, 2016, 59: 209–217

    Article  CAS  Google Scholar 

  16. Jia B, Wu Y, Zhao F, Yan C, Zhu S, Cheng P, Mai J, Lau TK, Lu X, Su CJ, Wang C, Zhan X. Sci China Chem, 2017, 60: 257–263

    Article  CAS  Google Scholar 

  17. Bin H, Zhong L, Zhang ZG, Gao L, Yang Y, Xue L, Zhang J, Zhang Z, Li Y. Sci China Chem, 2016, 59: 1317–1322

    Article  CAS  Google Scholar 

  18. Jung JW, Russell TP, Jo WH. Chem Mater, 2015, 27: 4865–4870

    Article  CAS  Google Scholar 

  19. Fan B, Ying L, Zhu P, Pan F, Liu F, Chen J, Huang F, Cao Y. Adv Mater, 2017, 29: 1703906

    Article  CAS  Google Scholar 

  20. Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148–7151

    Article  CAS  PubMed  Google Scholar 

  21. Qiu B, Xue L, Yang Y, Bin H, Zhang Y, Zhang C, Xiao M, Park K, Morrison W, Zhang ZG, Li Y. Chem Mater, 2017, 29: 7543–7553

    Article  CAS  Google Scholar 

  22. Cheng P, Zhao X, Zhou W, Hou J, Li Y, Zhan X. Org Electron, 2014, 15: 2270–2276

    Article  CAS  Google Scholar 

  23. Geng Y, Xiao B, Izawa S, Huang J, Tajima K, Zeng Q, Zhou E. J Mater Chem A, 2015, 3: 22325–22331

    Article  CAS  Google Scholar 

  24. Wang Y, Zhao X, Zhan X. J Mater Chem C, 2015, 3: 447–452

    Article  CAS  Google Scholar 

  25. Li Z, Lin JDA, Phan H, Sharenko A, Proctor CM, Zalar P, Chen Z, Facchetti A, Nguyen TQ. Adv Funct Mater, 2015, 24: 6989–6998

    Article  CAS  Google Scholar 

  26. Yuan J, Ma W. Org Electron, 2016, 39: 279–287

    Article  CAS  Google Scholar 

  27. Zhang Z, Ding Z, Long X, Dou C, Liu J, Wang L. J Mater Chem C, 2017, 5: 6812–6819

    Article  CAS  Google Scholar 

  28. Lu L, Kelly MA, You W, Yu L. Nat Photon, 2015, 9: 491–500

    Article  CAS  Google Scholar 

  29. An Q, Zhang F, Zhang J, Tang W, Deng Z, Hu B. Energy Environ Sci, 2016, 9: 281–322

    Article  Google Scholar 

  30. Zhong L, Gao L, Bin H, Hu Q, Zhang ZG, Liu F, Russell TP, Zhang Z, Li Y. Adv Energy Mater, 2017, 7: 1602215

    Article  CAS  Google Scholar 

  31. Zhao W, Li S, Zhang S, Liu X, Hou J. Adv Mater, 2017, 29: 1604059

    Article  CAS  Google Scholar 

  32. Cheng P, Zhang M, Lau TK, Wu Y, Jia B, Wang J, Yan C, Qin M, Lu X, Zhan X. Adv Mater, 2017, 29: 1605216

    Article  CAS  Google Scholar 

  33. Zhang J, Zhang Y, Fang J, Lu K, Wang Z, Ma W, Wei Z. J Am Chem Soc, 2015, 137: 8176–8183

    Article  CAS  PubMed  Google Scholar 

  34. Zhang G, Zhang K, Yin Q, Jiang XF, Wang Z, Xin J, Ma W, Yan H, Huang F, Cao Y. J Am Chem Soc, 2017, 139: 2387–2395

    Article  CAS  PubMed  Google Scholar 

  35. Zhou J, Zuo Y, Wan X, Long G, Zhang Q, Ni W, Liu Y, Li Z, He G, Li C, Kan B, Li M, Chen Y. J Am Chem Soc, 2013, 135: 8484–8487

    Article  CAS  PubMed  Google Scholar 

  36. Sun K, Xiao Z, Lu S, Zajaczkowski W, Pisula W, Hanssen E, White JM, Williamson RM, Subbiah J, Ouyang J, Holmes AB, Wong WWH, Jones DJ. Nat Commun, 2015, 6: 6013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Long X, Ding Z, Dou C, Zhang J, Liu J, Wang L. Adv Mater, 2016, 28: 6504–6508

    Article  CAS  PubMed  Google Scholar 

  38. Kong J, Hwang IW, Lee K. Adv Mater, 2014, 26: 6275–6283

    Article  CAS  PubMed  Google Scholar 

  39. Hexemer A, Bras W, Glossinger J, Schaible E, Gann E, Kirian R, MacDowell A, Church M, Rude B, Padmore H. J Phys-Conf Ser, 2010, 247: 012007

    Article  Google Scholar 

  40. Gann E, Young AT, Collins BA, Yan H, Nasiatka J, Padmore HA, Ade H, Hexemer A, Wang C. Rev Sci Instrum, 2012, 83: 045110

    Article  CAS  PubMed  Google Scholar 

  41. Wu Y, Wang ZY, Meng XY, Ma W. Prog Chem, 2017, 29: 93-101

    Google Scholar 

  42. Li M, Liu F, Wan X, Ni W, Kan B, Feng H, Zhang Q, Yang X, Wang Y, Zhang Y, Shen Y, Russell TP, Chen Y. Adv Mater, 2015, 27: 6296–6302

    Article  CAS  PubMed  Google Scholar 

  43. Gupta V, Bharti V, Kumar M, Chand S, Heeger AJ. Adv Mater, 2015, 27: 4398–4404

    Article  CAS  PubMed  Google Scholar 

  44. Janssen RAJ, Nelson J. Adv Mater, 2013, 25: 1847–1858

    Article  CAS  PubMed  Google Scholar 

  45. Veldman D, Meskers SCJ, Janssen RAJ. Adv Funct Mater, 2010, 19: 1939–1948

    Article  CAS  Google Scholar 

  46. Polman A, Knight M, Garnett EC, Ehrler B, Sinke WC. Science, 2016, 352: aad4424–aad4424

    Article  CAS  PubMed  Google Scholar 

  47. Ding Z, Long X, Dou C, Liu J, Wang L. Chem Sci, 2016, 7: 6197–6202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao R, Dou C, Liu J, Wang L. Chin J Polym Sci, 2017, 35: 198–206

    Article  CAS  Google Scholar 

  49. Dou C, Liu J, Wang L. Sci China Chem, 2017, 60: 450–459

    Article  CAS  Google Scholar 

  50. Dou C, Long X, Ding Z, Xie Z, Liu J, Wang L. Angew Chem Int Ed, 2016, 55: 1436–1440

    Article  CAS  Google Scholar 

  51. Dou C, Ding Z, Zhang Z, Xie Z, Liu J, Wang L. Angew Chem Int Ed, 2015, 54: 3648–3652

    Article  CAS  Google Scholar 

  52. Kim T, Choi J, Kim HJ, Lee W, Kim BJ. Macromolecules, 2017, 50: 6861–6871

    Article  CAS  Google Scholar 

  53. Cho HH, Han G, Younts R, Lee W, Gautam BR, Lee S, Lee C, Kim T, Kim FS, Gundogdu K, Kim BJ. J Mater Chem A, 2017, 5: 21291–21299

    Article  CAS  Google Scholar 

  54. Kang H, Lee W, Oh J, Kim T, Lee C, Kim BJ. Acc Chem Res, 2016, 49: 2424–2434

    Article  CAS  PubMed  Google Scholar 

  55. Koster LJA, Mihailetchi VD, Xie H, Blom PWM. Appl Phys Lett, 2005, 87: 203502

    Article  CAS  Google Scholar 

  56. Mihailetchi VD, Koster LJA, Blom PWM, Melzer C, de Boer B, van Duren JKJ, Janssen RAJ. Adv Funct Mater, 2005, 15: 795–801

    Article  CAS  Google Scholar 

  57. Lee C, Giridhar T, Choi J, Kim S, Kim Y, Kim T, Lee W, Cho HH, Wang C, Ade H, Kim BJ. Chem Mater, 2017, 29: 9407–9415

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Basic Research and Development Program of China (2014CB643504), the National Natural Science Foundation of China (21625403, 51403200, 21504066, 21534003), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB12010200), Jilin Scientific and Technological Development Program (20170519003JH), Ministry of Science and Technology (2016YFA0200700), the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (DE-AC02- 05CH11231), ARC Future Fellowship (FT130100500) and the ARC Centre of Excellence in Exciton Science (CE170100026). The authors thank Chenhui Zhu at beamline 7.3.3, and Cheng Wang at beamline 11.0.1.2 for assistance with data acquisition. The collaborative work in this project between Australia and China was made possible by funding from the Australian Renewable Energy Agency, the Australian Centre for Advanced Photovoltaics and the International Research & Research Training Fund of the University of Melbourne. Responsibility for the views, information or advice expressed herein is not accepted by the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zicheng Ding, Wei Ma, Yongsheng Chen or Jun Liu.

Electronic supplementary material

11426_2018_9249_MOESM1_ESM.docx

Manipulating active layer morphology of molecular donor/polymer acceptor based organic solar cells through ternary blends

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Ding, Z., Jones, D.J. et al. Manipulating active layer morphology of molecular donor/polymer acceptor based organic solar cells through ternary blends. Sci. China Chem. 61, 1025–1033 (2018). https://doi.org/10.1007/s11426-018-9249-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9249-7

Keywords

Navigation