Skip to main content
Log in

Non-contact biomimetic mechanism for selective hydrogenation of nitroaromatics on heterogeneous metal nanocatalysts

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

While the enzymatic reduction of unsaturated compounds usually has high specificity, highly selective reduction processes are hardly realized by heterogeneous industrial catalysts, which is critical for the green production of many fine chemicals. Here, we report an unexpected discovery of a biomimetic behavior of dicyandiamide (DICY)-modified Pt nanocatalysts for the green hydrogenation of a wide range of nitroaromatics. We demonstrate that the surface modification by DICY not only prevents the direct contact of nitroaromatic reactants with Pt surface but also induces an effective non-contact hydrogenation mechanism mediated by protons and electrons. In such a process, the DICY layer serves as a “semi-permeable membrane” to allow the permeation of H2 molecules for being activated into electrons and protons at the Pt-DICY interface. With the generation of separated protons and electrons, the nitro group with strong electrophilic properties can be hydrogenated through the electron transfer followed by the proton transfer, which is facilitated by the hydrogen bonding network formed by protonated DICY. The unique mechanism makes it highly directional toward the hydrogenation of nitro groups without side reactions. Owing to its capability to largely eliminate the waste generation, the developed Pt-DICY catalysts have been successfully applied for the green industrial production of many important aniline intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, Stacchiola DJ, Liu P, Hrbek J, Fernández Sanz J, Rodriguez JA. Science, 2014, 345: 546–550

    Article  CAS  PubMed  Google Scholar 

  2. Kyriakou G, Boucher MB, Jewell AD, Lewis EA, Lawton TJ, Baber AE, Tierney HL, Flytzani-Stephanopoulos M, Sykes ECH. Science, 2012, 335: 1209–1212

    Article  CAS  PubMed  Google Scholar 

  3. Corma A, Serna P. Science, 2006, 313: 332–334

    Article  CAS  PubMed  Google Scholar 

  4. Chai Y, Wu G, Liu X, Ren Y, Dai W, Wang C, Xie Z, Guan N, Li L. J Am Chem Soc, 2019, 141: 9920–9927

    Article  CAS  PubMed  Google Scholar 

  5. Aich P, Wei H, Basan B, Kropf AJ, Schweitzer NM, Marshall CL, Miller JT, Meyer R. J Phys Chem C, 2015, 119: 18140–18148

    Article  CAS  Google Scholar 

  6. Fiorio JL, López N, Rossi LM. ACS Catal, 2017, 7: 2973–2980

    Article  CAS  Google Scholar 

  7. García-Melchor M, López N. J Phys Chem C, 2014, 118: 10921–10926

    Article  CAS  Google Scholar 

  8. Sellmann D, Prakash R, Heinemann FW, Moll M, Klimowicz M. Angew Chem Int Ed, 2004, 43: 1877–1880

    Article  CAS  Google Scholar 

  9. Taylor MJ, Durndell LJ, Isaacs MA, Parlett CMA, Wilson K, Lee AF, Kyriakou G. Appl Catal B-Environ, 2016, 180: 580–585

    Article  CAS  Google Scholar 

  10. Marshall ST, O’Brien M, Oetter B, Corpuz A, Richards RM, Schwartz DK, Medlin JW. Nat Mater, 2010, 9: 853–858

    Article  CAS  PubMed  Google Scholar 

  11. Makosch M, Lin WI, Bumbálek V, Sá J, Medlin JW, Hungerbühler K, van Bokhoven JA. ACS Catal, 2012, 2: 2079–2081

    Article  CAS  Google Scholar 

  12. Albani D, Vilé G, Mitchell S, Witte PT, Almora-Barrios N, Verel R, López N, Pérez-Ramírez J. Catal Sci Technol, 2016, 6: 1621–1631

    Article  CAS  Google Scholar 

  13. Kuchenreuther JM, Guo Y, Wang H, Myers WK, George SJ, Boyke CA, Yoda Y, Alp EE, Zhao J, Britt RD, Swartz JR, Cramer SP. Biochemistry, 2013, 52: 818–826

    Article  CAS  PubMed  Google Scholar 

  14. Vincent KA, Li X, Blanford CF, Belsey NA, Weiner JH, Armstrong FA. Nat Chem Biol, 2007, 3: 761–762

    Article  CAS  PubMed  Google Scholar 

  15. Frey M. ChemBioChem, 2002, 3: 153–160

    Article  CAS  PubMed  Google Scholar 

  16. Schilter D, Camara JM, Huynh MT, Hammes-Schiffer S, Rauchfuss TB. Chem Rev, 2016, 116: 8693–8749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tai H, Hirota S, Stripp ST. Acc Chem Res, 2021, 54: 232–241

    Article  CAS  PubMed  Google Scholar 

  18. Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM, Broderick JB, King PW, Adams MWW. BioChim Biophys Acta (BBA) — Mol Cell Res, 2015, 1853: 1350–1369

    Article  CAS  Google Scholar 

  19. Huang G, Wagner T, Ermler U, Shima S. Nat Rev Chem, 2020, 4: 213–221

    Article  CAS  Google Scholar 

  20. Slocik JM, Govorov AO, Naik RR. Angew Chem Int Ed, 2008, 47: 5335–5339

    Article  CAS  Google Scholar 

  21. Meeuwissen J, Reek JNH. Nat Chem, 2010, 2: 615–621

    Article  CAS  PubMed  Google Scholar 

  22. Manea F, Houillon FB, Pasquato L, Scrimin P. Angew Chem Int Ed, 2004, 43: 6165–6169

    Article  CAS  Google Scholar 

  23. Reback ML, Ginovska-Pangovska B, Ho MH, Jain A, Squier TC, Raugei S, Roberts JAS, Shaw WJ. Chem Eur J, 2013, 19: 1928–1941

    Article  CAS  PubMed  Google Scholar 

  24. Simmons TR, Berggren G, Bacchi M, Fontecave M, Artero V. Coord Chem Rev, 2014, 270–271: 127–150

    Article  CAS  Google Scholar 

  25. Zaffaroni R, Detz RJ, van der Vlugt JI, Reek JNH. ChemSusChem, 2018, 11: 209–218

    Article  CAS  PubMed  Google Scholar 

  26. Hannink N, Rosser SJ, French CE, Basran A, Murray JAH, Nicklin S, Bruce NC. Nat Biotechnol, 2001, 19: 1168–1172

    Article  CAS  PubMed  Google Scholar 

  27. Race PR, Lovering AL, Green RM, Ossor A, White SA, Searle PF, Wrighton CJ, Hyde EI. J Biol Chem, 2005, 280: 13256–13264

    Article  CAS  PubMed  Google Scholar 

  28. Lovering AL, Hyde EI, Searle PF, White SA. J Mol Biol, 2001, 309: 203–213

    Article  CAS  PubMed  Google Scholar 

  29. Chen G, Tan Y, Wu B, Fu G, Zheng N. Chem Commun, 2012, 48: 2758–2760

    Article  CAS  Google Scholar 

  30. Sexton BA, Avery NR. Surf Sci, 1983, 129: 21–36

    Article  CAS  Google Scholar 

  31. Shayeghi A, Krähling S, Hörtz P, Johnston RL, Heard CJ, Schäfer R. J Phys Chem C, 2017, 121: 21354–21363

    Article  CAS  Google Scholar 

  32. Adamczyk AJ. Surf Sci, 2019, 682: 84–98

    Article  CAS  Google Scholar 

  33. Kahsar KR, Schwartz DK, Medlin JW. J Am Chem Soc, 2014, 136: 520–526

    Article  CAS  PubMed  Google Scholar 

  34. Vilé G, Almora-Barrios N, López N, Pérez-Ramírez J. ACS Catal, 2015, 5: 3767–3778

    Article  CAS  Google Scholar 

  35. Xu KX, Guo MH, Ren LQ, Huang W, Sun JJ. Sci China Chem, 2018, 61: 360–367

    Article  CAS  Google Scholar 

  36. Collado JA, Ramírez FJ. J Raman Spectrosc, 1999, 30: 391–397

    Article  CAS  Google Scholar 

  37. Yezhelyev MV, Qi L, O’Regan RM, Nie S, Gao X. J Am Chem Soc, 2008, 130: 9006–9012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Belding L, Stoyanov P, Dudding T. J Org Chem, 2016, 81: 553–558

    Article  CAS  PubMed  Google Scholar 

  39. Bai J, Zhou Y, Chen Q, Yang Q, Yang J. ChemBioChem, 2015, 16: 1219–1225

    Article  CAS  PubMed  Google Scholar 

  40. Haynes CA, Koder RL, Miller AF, Rodgers DW. J Biol Chem, 2002, 277: 11513–11520

    Article  CAS  PubMed  Google Scholar 

  41. Hecht HJ, Erdmann H, Park HJ, Sprinzl M, Schmid RD. Nat Struct Mol Biol, 1995, 2: 1109–1114

    Article  CAS  Google Scholar 

  42. Chalkley MJ, Garrido-Barros P, Peters JC. Science, 2020, 369: 850–854

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFA0207302) and the National Nature Science Foundation of China (21890752, 21731005, 22072116, 92045303). N.F. Zheng acknowledges support from the Tencent Foundation through the XPLORER PRIZE. We also thank the XAFS Station (BL14W1) of the Shanghai Synchrotron Radiation Facility (SSRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Fu or Nanfeng Zheng.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Li, L., Qin, R. et al. Non-contact biomimetic mechanism for selective hydrogenation of nitroaromatics on heterogeneous metal nanocatalysts. Sci. China Chem. 65, 726–732 (2022). https://doi.org/10.1007/s11426-021-1198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1198-2

Keywords

Navigation