Skip to main content
Log in

8.30% Efficiency P3HT-based all-polymer solar cells enabled by a miscible polymer acceptor with high energy levels and efficient electron transport

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

P3HT stands out from numerous polymer donors owing to the merits of low cost and high scalability of synthesis. However, the photovoltaic performance of P3HT-based blends lags significantly behind the state-of-the-art systems, especially for all-polymer solar cells (APSCs) that generally show efficiency of around 3%–4% due to the lack of matched polymer acceptors. Herein, a polymer acceptor, named IDTBTC8-CN, was designed and synthesized with indacenodithiophene (IDT) and mono-cyano (CN)-substituted benzothiadiazole (BT-CN) as building blocks. Introducing a CN group endowed the polymer with decreased bandgap, and apparent n-type charge transport character despite the relatively high energy levels. Additionally, IDTBTC8-CN showed largely improved miscibility with P3HT, compared with that of BT-based control polymer IDTBTC8. The high miscibility between P3HT and IDTBTC8-CN as well as the amorphous aggregation behavior of IDTBTC8-CN enabled a broad manipulation room for the blend film to acquire favorable morphology. Eventually, a champion efficiency of 8.30% was achieved, in sharp contrast to that of the IDTBTC8-based system (1.21%). Such efficiency is a new record for P3HT-based APSCs reported so far. Moreover, P3HT:IDTBTC8-CN blend film also exhibited excellent mechanical robustness. This study implies the guidance of molecular design of the polymer acceptors and morphology control for P3HT-based APSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang G, Melkonyan FS, Facchetti A, Marks TJ. Angew Chem Int Ed, 2019, 58: 4129–4142

    CAS  Google Scholar 

  2. Lee C, Lee S, Kim GU, Lee W, Kim BJ. Chem Rev, 2019, 119: 8028–8086

    CAS  PubMed  Google Scholar 

  3. Kang H, Lee W, Oh J, Kim T, Lee C, Kim BJ. Acc Chem Res, 2016, 49: 2424–2434

    CAS  PubMed  Google Scholar 

  4. Sun R, Wang W, Yu H, Chen Z, Xia XX, Shen H, Guo J, Shi M, Zheng Y, Wu Y, Yang W, Wang T, Wu Q, Yang YM, Lu X, Xia J, Brabec CJ, Yan H, Li Y, Min J. Joule, 2021, 5: 1548–1565

    CAS  Google Scholar 

  5. Rodriquez D, Kim JH, Root SE, Fei Z, Boufflet P, Heeney M, Kim TS, Lipomi DJ. ACS Appl Mater Interfaces, 2017, 9: 8855–8862

    CAS  PubMed  Google Scholar 

  6. Kim JS, Kim JH, Lee W, Yu H, Kim HJ, Song I, Shin M, Oh JH, Jeong U, Kim TS, Kim BJ. Macromolecules, 2015, 48: 4339–4346

    CAS  Google Scholar 

  7. Yang C, Zhang S, Ren J, Gao M, Bi P, Ye L, Hou J. Energy Environ Sci, 2020, 13: 2864–2869

    CAS  Google Scholar 

  8. Xu X, Zhang G, Yu L, Li R, Peng Q. Adv Mater, 2019, 31: 1906045

    CAS  Google Scholar 

  9. Liang Z, Cheng X, Jiang Y, Yu J, Xu X, Peng Z, Bu L, Zhang Y, Tang Z, Li M, Ye L, Geng Y. ACS Appl Mater Interfaces, 2021, 13: 61487–61495

    CAS  PubMed  Google Scholar 

  10. Liu Y, Xian K, Zhang X, Gao M, Shi Y, Zhou K, Deng Y, Hou J, Geng Y, Ye L. Macromolecules, 2022, 55: 3078–3086

    CAS  Google Scholar 

  11. Wang X, Tang A, Yang J, Du M, Li J, Li G, Guo Q, Zhou E. Sci China Chem, 2020, 63: 1666–1674

    CAS  Google Scholar 

  12. Xiao B, Tang A, Zhang J, Mahmood A, Wei Z, Zhou E. Adv Energy Mater, 2017, 7: 1602269

    Google Scholar 

  13. Xiao B, Tang A, Yang J, Mahmood A, Sun X, Zhou E. ACS Appl Mater Interfaces, 2018, 10: 10254–10261

    CAS  PubMed  Google Scholar 

  14. Fu Y, Wang B, Qu J, Wu Y, Ma W, Geng Y, Han Y, Xie Z. Adv Funct Mater, 2016, 26: 5922–5929

    CAS  Google Scholar 

  15. Mori D, Benten H, Ohkita H, Ito S, Miyake K. ACS Appl Mater Interfaces, 2012, 4: 3325–3329

    CAS  PubMed  Google Scholar 

  16. Osaka M, Mori D, Benten H, Ogawa H, Ohkita H, Ito S. ACS Appl Mater Interfaces, 2017, 9: 15615–15622

    CAS  PubMed  Google Scholar 

  17. Li W, An Y, Wienk MM, Janssen RAJ. J Mater Chem A, 2015, 3: 6756–6760

    CAS  Google Scholar 

  18. Murari NM, Crane MJ, Earmme T, Hwang YJ, Jenekhe SA. Appl Phys Lett, 2014, 104: 223906

    Google Scholar 

  19. Zhou K, Wu Y, Liu Y, Zhou X, Zhang L, Ma W. ACS Energy Lett, 2019, 4: 1057–1064

    CAS  Google Scholar 

  20. Li Y, Zhang Y, Wu B, Pang S, Yuan X, Duan C, Huang F, Cao Y. Solar RRL, 2022, 6: 2200073

    CAS  Google Scholar 

  21. Yang Q, Wang J, Zhang X, Zhang J, Fu Y, Xie Z. Sci China Chem, 2015, 58: 309–316

    CAS  Google Scholar 

  22. McNeill CR, Halls JJM, Wilson R, Whiting GL, Berkebile S, Ramsey MG, Friend RH, Greenham NC. Adv Funct Mater, 2008, 18: 2309–2321

    CAS  Google Scholar 

  23. Yang Q, Song H, Gao B, Wang Y, Fu Y, Yang J, Xie Z, Wang L. RSC Adv, 2014, 4: 12579–12585

    CAS  Google Scholar 

  24. Sun H, Guo X, Facchetti A. Chem, 2020, 6: 1310–1326

    CAS  Google Scholar 

  25. Fu H, Li Y, Yu J, Wu Z, Fan Q, Lin F, Woo HY, Gao F, Zhu Z, Jen AKY. J Am Chem Soc, 2021, 143: 2665–2670

    CAS  PubMed  Google Scholar 

  26. Du J, Hu K, Meng L, Angunawela I, Zhang J, Qin S, Liebman-Pelaez A, Zhu C, Zhang Z, Ade H, Li Y. Angew Chem Int Ed, 2020, 59: 15181–15185

    CAS  Google Scholar 

  27. Yu H, Pan M, Sun R, Agunawela I, Zhang J, Li Y, Qi Z, Han H, Zou X, Zhou W, Chen S, Lai JYL, Luo S, Luo Z, Zhao D, Lu X, Ade H, Huang F, Min J, Yan H. Angew Chem Int Ed, 2021, 60: 10137–10146

    CAS  Google Scholar 

  28. Li Z, Ying L, Zhu P, Zhong W, Li N, Liu F, Huang F, Cao Y. Energy Environ Sci, 2019, 12: 157–163

    CAS  Google Scholar 

  29. Zhao R, Wang N, Yu Y, Liu J. Chem Mater, 2020, 32: 1308–1314

    CAS  Google Scholar 

  30. Zhang W, Smith J, Watkins SE, Gysel R, McGehee M, Salleo A, Kirkpatrick J, Ashraf S, Anthopoulos T, Heeney M, McCulloch I. J Am Chem Soc, 2010, 132: 11437–11439

    CAS  PubMed  Google Scholar 

  31. Zhang X, Bronstein H, Kronemeijer AJ, Smith J, Kim Y, Kline RJ, Richter LJ, Anthopoulos TD, Sirringhaus H, Song K, Heeney M, Zhang W, McCulloch I, DeLongchamp DM. Nat Commun, 2013, 4: 2238

    PubMed  Google Scholar 

  32. Wadsworth A, Chen H, Thorley KJ, Cendra C, Nikolka M, Bristow H, Moser M, Salleo A, Anthopoulos TD, Sirringhaus H, McCulloch I. J Am Chem Soc, 2020, 142: 652–664

    CAS  PubMed  Google Scholar 

  33. Noriega R, Rivnay J, Vandewal K, Koch FPV, Stingelin N, Smith P, Toney MF, Salleo A. Nat Mater, 2013, 12: 1038–1044

    CAS  PubMed  Google Scholar 

  34. Casey A, Dimitrov SD, Shakya-Tuladhar P, Fei Z, Nguyen M, Han Y, Anthopoulos TD, Durrant JR, Heeney M. Chem Mater, 2016, 28: 5110–5120

    CAS  Google Scholar 

  35. Yuan X, Zhao Y, Zhang Y, Xie D, Deng W, Li J, Wu H, Duan C, Huang F, Cao Y. Adv Funct Mater, 2022, 32: 2201142

    CAS  Google Scholar 

  36. You H, Kang H, Kim D, Park JS, Lee JW, Lee S, Kim FS, Kim BJ. ChemSusChem, 2021, 14: 3520–3527

    CAS  PubMed  Google Scholar 

  37. Wang J, Zhang M, Lin J, Zheng Z, Zhu L, Bi P, Liang H, Guo X, Wu J, Wang Y, Yu L, Li J, Lv J, Liu X, Liu F, Hou J, Li Y. Energy Environ Sci, 2022, 15: 1585–1593

    CAS  Google Scholar 

  38. Yao H, Bai F, Hu H, Arunagiri L, Zhang J, Chen Y, Yu H, Chen S, Liu T, Lai JYL, Zou Y, Ade H, Yan H. ACS Energy Lett, 2019, 4: 417–422

    CAS  Google Scholar 

  39. Zhang ZG, Yang Y, Yao J, Xue L, Chen S, Li X, Morrison W, Yang C, Li Y. Angew Chem Int Ed, 2017, 56: 13503–13507

    CAS  Google Scholar 

  40. Wang Q, Li M, Peng Z, Kirby N, Deng Y, Ye L, Geng Y. Sci China Chem, 2021, 64: 478–487

    CAS  Google Scholar 

  41. Liang Z, Li M, Wang Q, Qin Y, Stuard SJ, Peng Z, Deng Y, Ade H, Ye L, Geng Y. Joule, 2020, 4: 1278–1295

    CAS  Google Scholar 

  42. Liang Z, Gao M, Zhang B, Wu J, Peng Z, Li M, Ye L, Geng Y. Front Chem, 2021, 9: 687996

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Liang Q, Jiao X, Yan Y, Xie Z, Lu G, Liu J, Han Y. Adv Funct Mater, 2019, 29: 1807591

    CAS  Google Scholar 

  44. Brenner TJK, Hwang I, Greenham NC, McNeill CR. J Appl Phys, 2010, 107: 114501

    Google Scholar 

  45. Ryu S, Ha NY, Ahn YH, Park JY, Lee S. Sci Rep, 2021, 11: 16781

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ma R, Zhou K, Sun Y, Liu T, Kan Y, Xiao Y, Dela Peña TA, Li Y, Zou X, Xing Z, Luo Z, Wong KS, Lu X, Ye L, Yan H, Gao K. Matter, 2022, 5: 725–734

    CAS  Google Scholar 

  47. Lee J-, Sun C, Ma BS, Kim HJ, Wang C, Ryu JM, Lim C, Kim T, Kim Y, Kwon S, Kim BJ. Adv Energy Mater, 2021, 11: 2003367

    CAS  Google Scholar 

  48. Lee JW, Ma BS, Choi J, Lee J, Lee S, Liao K, Lee W, Kim TS, Kim BJ. Chem Mater, 2019, 32: 582–594

    Google Scholar 

  49. Wu Q, Wang W, Wu Y, Sun R, Guo J, Shi M, Min J. Natl Sci Rev, 2022, 9: nwab151

    CAS  PubMed  Google Scholar 

  50. Root SE, Savagatrup S, Printz AD, Rodriquez D, Lipomi DJ. Chem Rev, 2017, 117: 6467–6499

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22075200, 52121002) and the Fundamental Research Funds for the Central Universities. The authors appreciate the beamline 1W1A of Beijing Synchrotron Radiation Facility (BSRF) for supporting the GIWAXS characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miaomiao Li or Yanhou Geng.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

11426_2022_1386_MOESM1_ESM.pdf

8.30% Efficiency P3HT-based all-polymer solar cells enabled by a miscible polymer acceptor with high energy levels and efficient electron transport

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., He, J., Zhao, B. et al. 8.30% Efficiency P3HT-based all-polymer solar cells enabled by a miscible polymer acceptor with high energy levels and efficient electron transport. Sci. China Chem. 66, 216–227 (2023). https://doi.org/10.1007/s11426-022-1386-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1386-1

Keywords

Navigation