Skip to main content
Log in

Differential impacts of adult trees on offspring and non-offspring recruits in a subtropical forest

  • Cover Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

An important mechanism promoting species coexistence is conspecific negative density dependence (CNDD), which inhibits conspecific neighbors by accumulating host-specific enemies near adult trees. Natural enemies may be genotype-specific and regulate offspring dynamics more strongly than non-offspring, which is often neglected due to the difficulty in ascertaining genetic relatedness. Here, we investigated whether offspring and non-offspring of a dominant species, Castanopsis eyrei, suffered from different strength of CNDD based on parentage assignment in a subtropical forest. We found decreased recruitment efficiency (proxy of survival probability) of offspring compared with non-offspring near adult trees during the seedling-sapling transition, suggesting genotype-dependent interactions drive tree demographic dynamics. Furthermore, the genetic similarity between individuals of same cohort decreased in late life history stages, indicating genetic-relatedness-dependent tree mortality throughout ontogeny. Our results demonstrate that within-species genetic relatedness significantly affects the strength of CNDD, implying genotype-specific natural enemies may contribute to population dynamics in natural forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arnaud-haond, S., and Belkhir, K. (2007). GENCLONE: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes 7, 15–17.

    Article  CAS  Google Scholar 

  • Bagchi, R., Gallery, R.E., Gripenberg, S., Gurr, S.J., Narayan, L., Addis, C. E., Freckleton, R.P., and Lewis, O.T. (2014). Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506, 85–88.

    Article  CAS  PubMed  Google Scholar 

  • Berens, D.G., Braun, C., González-Martínez, S.C., Griebeler, E.M., Nathan, R., and Böhning-Gaese, K. (2014). Fine-scale spatial genetic dynamics over the life cycle of the tropical tree Prunus africana. Heredity 113, 401–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berens, D.G., Griebeler, E.M., Braun, C., Chituyi, B.B., Nathan, R., and Böhning-Gaese, K. (2013). Changes of effective gene dispersal distances by pollen and seeds across successive life stages in a tropical tree. Oikos 122, 1616–1625.

    Article  Google Scholar 

  • Bergelson, J., Dwyer, G., and Emerson, J.J. (2001). Models and data on plant-enemy coevolution. Annu Rev Genet 35, 469–499.

    Article  CAS  PubMed  Google Scholar 

  • Bruns, E., Carson, M., and May, G. (2012). Pathogen and host genotype differently affect pathogen fitness through their effects on different life-history stages. BMC Evol Biol 12, 135.

    Article  PubMed  PubMed Central  Google Scholar 

  • Canty, A., and Ripley, B. (2021). Boot: Bootstrap R (S-Plus) Functions. R package version 1.3–28.

  • Chen, L., Mi, X., Comita, L.S., Zhang, L., Ren, H., and Ma, K. (2010). Community-level consequences of density dependence and habitat association in a subtropical broad-leaved forest. Ecol Lett 13, 695–704.

    Article  PubMed  Google Scholar 

  • Chen, L., Swenson, N.G., Ji, N., Mi, X., Ren, H., Guo, L., and Ma, K. (2019). Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science 366, 124–128.

    Article  CAS  PubMed  Google Scholar 

  • Cheplick, G.P. (1992). Sibling competition in plants. J Ecol 80, 567–575.

    Article  Google Scholar 

  • Comita, L.S., and Stump, S.M. (2020). Natural enemies and the maintenance of tropical tree diversity: recent insights and implications for the future of biodiversity in a changing world. annals 105, 377–392.

    Article  Google Scholar 

  • Connell, J.H. (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In Dynamics of Populations, P.J. den Boer, and G.R. Gradwell, ed. (Wageningen: Centre for Agricultural Publishing and Documentation PU-DOC). pp. 298–312.

    Google Scholar 

  • Cordier, T., Robin, C., Capdevielle, X., Desprez-Loustau, M.L., and Vacher, C. (2012). Spatial variability of phyllosphere fungal assemblages: genetic distance predominates over geographic distance in a European beech stand (Fagus sylvatica). Fungal Ecol 5, 509–520.

    Article  Google Scholar 

  • Davies, S.J., Abiem, I., Abu Salim, K., Aguilar, S., Allen, D., Alonso, A., Anderson-Teixeira, K., Andrade, A., Arellano, G., Ashton, P.S., et al. (2021). ForestGEO: understanding forest diversity and dynamics through a global observatory network. Biol Conserv 253, 108907.

    Article  Google Scholar 

  • Davison, A.C., and Hinkley, D.V. (1997). Bootstrap Methods and Their Applications (Cambridge: Cambridge University Press).

    Book  Google Scholar 

  • Dow, B.D., and Ashley, M.V. (1996). Microsatellite analysis of seed dispersal and parentage of saplings in bur oak, Quercus macrocarpa. Mol Ecol 5, 615–627.

    Article  Google Scholar 

  • Du, Y., Mi, X., Liu, X., Chen, L., and Ma, K. (2009). Seed dispersal phenology and dispersal syndromes in a subtropical broad-leaved forest of China. For Ecol Manage 258, 1147–1152.

    Article  Google Scholar 

  • Eck, J.L., Stump, S.M., Delavaux, C.S., Mangan, S.A., and Comita, L.S. (2019). Evidence of within-species specialization by soil microbes and the implications for plant community diversity. Proc Natl Acad Sci USA 116, 7371–7376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehlers, B.K., Damgaard, C.F., and Laroche, F. (2016). Intraspecific genetic variation and species coexistence in plant communities. Biol Lett 12, 20150853.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eisenhauer, N. (2022). The shape that matters: how important is biodiversity for ecosystem functioning?. Sci China Life Sci 65, 651–653.

    Article  PubMed  Google Scholar 

  • Forrister, D.L., Endara, M.J., Younkin, G.C., Coley, P.D., and Kursar, T.A. (2019). Herbivores as drivers of negative density dependence in tropical forest saplings. Science 363, 1213–1216.

    Article  CAS  PubMed  Google Scholar 

  • Hardy, O.J., Delaide, B., Hainaut, H., Gillet, J.F., Gillet, P., Kaymak, E., Vankerckhove, N., Duminil, J., and Doucet, J.L. (2019). Seed and pollen dispersal distances in two African legume timber trees and their reproductive potential under selective logging. Mol Ecol 28, 3119–3134.

    Article  PubMed  Google Scholar 

  • Harms, K.E., Wright, S.J., Calderón, O., Hernández, A., and Herre, E.A. (2000). Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404, 493–495.

    Article  CAS  PubMed  Google Scholar 

  • Huang, C.J., Zhang, Y.T., and Bartholomew, B. (1999). Fagaceae. In Flora of China, Z. Wu, and P.H. Raven, ed. (Beijing: Science Press, and St. Louis: Missouri Botanical Garden Press). pp. 314–400.

    Google Scholar 

  • Janzen, D.H. (1970). Herbivores and the number of tree species in tropical forests. Am Natist 104, 501–528.

    Article  Google Scholar 

  • Johnson, D.J., Beaulieu, W.T., Bever, J.D., and Clay, K. (2012). Conspecific negative density dependence and forest diversity. Science 336, 904–907.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, D.J., Bourg, N.A., Howe, R., McShea, W.J., Wolf, A., and Clay, K. (2014). Conspecific negative density-dependent mortality and the structure of temperate forests. Ecology 95, 2493–2503.

    Article  Google Scholar 

  • Jones, F.A., and Hubbell, S.P. (2006). Demographic spatial genetic structure of the Neotropical tree, Jacaranda copaia. Mol Ecol 15, 3205–3217.

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski, S.T., Taper, M.L., and Marshall, T.C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16, 1099–1106.

    Article  PubMed  Google Scholar 

  • Legendre, P., Mi, X., Ren, H., Ma, K., Yu, M., Sun, I.F., and He, F. (2009). Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90, 663–674.

    Article  PubMed  Google Scholar 

  • Leimu, R., Mutikainen, P., Koricheva, J., and Fischer, M. (2006). How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94, 942–952.

    Article  Google Scholar 

  • Liu, L., and Zhang, J. (2020). Decoding the secret of species coexistence: a perspective from soil fungi. Sci China Life Sci 63, 169–170.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Etienne, R.S., Liang, M., Wang, Y., and Yu, S. (2015). Experimental evidence for an intraspecific Janzen-Connell effect mediated by soil biota. Ecology 96, 662–671.

    Article  PubMed  Google Scholar 

  • Mao, L.H., Zhou, X.L., and Fang, Y.M. (2016). Genetic diversity and population structure of Castanopsis eyrei based on simple sequence repeat markers. Genet Mol Res 15.

  • Michalski, S.G., and Durka, W. (2007). High selfing and high inbreeding depression in peripheral populations of Juncus atratus. Mol Ecol 16, 4715–4727.

    Article  PubMed  Google Scholar 

  • Millerón, M., López de Heredia, U., Lorenzo, Z., Alonso, J., Dounavi, A., Gil, L., and Nanos, N. (2013). Assessment of spatial discordance of primary and effective seed dispersal of European beech (Fagus sylvatica L.) by ecological and genetic methods. Mol Ecol 22, 1531–1545.

    Article  PubMed  Google Scholar 

  • Murphy, S.J., Wiegand, T., and Comita, L.S. (2017). Distance-dependent seedling mortality and long-term spacing dynamics in a neotropical forest community. Ecol Lett 20, 1469–1478.

    Article  PubMed  Google Scholar 

  • Paine, C.E.T., Harms, K.E., Schnitzer, S.A., and Carson, W.P. (2008). Weak competition among tropical tree seedlings: Implications for species coexistence. Biotropica 40, 432–440.

    Article  Google Scholar 

  • Peakall, R., and Smouse, P.E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6, 288–295.

    Article  Google Scholar 

  • Peakall, R., and Smouse, P.E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petermann, J.S., Fergus, A.J.F., Turnbull, L.A., and Schmid, B. (2008). Janzen-connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology 89, 2399–2406.

    Article  PubMed  Google Scholar 

  • Price, J.S., Bever, J.D., and Clay, K. (2004). Genotype, environment, and genotype by environment interactions determine quantitative resistance to leaf rust (Coleosporium asterum) in Euthamia graminifolia (Asteraceae). New Phytol 162, 729–743.

    Article  PubMed  Google Scholar 

  • Purahong, W., Durka, W., Fischer, M., Dommert, S., Schöps, R., Buscot, F., and Wubet, T. (2016). Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest. Sci Rep 6, 36672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, J., Zhang, Z., Geng, Y., Zhang, C., Song, Z., and Zhao, X. (2020). Variations of density-dependent seedling survival in a temperate forest. For Ecol Manage 468, 118158.

    Article  Google Scholar 

  • Searle, E.B., and Chen, H.Y.H. (2020). Complementarity effects are strengthened by competition intensity and global environmental change in the central boreal forests of Canada. Ecol Lett 23, 79–87.

    Article  PubMed  Google Scholar 

  • Shao, X., Brown, C., Worthy, S.J., Liu, L., Cao, M., Li, Q., Lin, L., and Swenson, N.G. (2018). Intra-specific relatedness, spatial clustering and reduced demographic performance in tropical rainforest trees. Ecol Lett 21, 1174–1181.

    Article  PubMed  Google Scholar 

  • Smouse, P.E., Peakall, R., and Gonzales, E. (2008). A heterogeneity test for fine-scale genetic structure. Mol Ecol 17, 3389–3400.

    Article  PubMed  Google Scholar 

  • Steinitz, O., Troupin, D., Vendramin, G.G., and Nathan, R. (2011). Genetic evidence for a Janzen-Connell recruitment pattern in reproductive offspring of Pinus halepensis trees. Mol Ecol 20, 4152–4164.

    Article  CAS  PubMed  Google Scholar 

  • Stump, S.M., and Comita, L.S. (2020). Differences among species in seed dispersal and conspecific neighbor effects can interact to influence coexistence. Theor Ecol 13, 551–581.

    Article  Google Scholar 

  • Swamy, V., Terborgh, J., Dexter, K.G., Best, B.D., Alvarez, P., and Cornejo, F. (2011). Are all seeds equal? Spatially explicit comparisons of seed fall and sapling recruitment in a tropical forest. Ecol Lett 14, 195–201.

    Article  PubMed  Google Scholar 

  • Terborgh, J. (2020). At 50, Janzen—Connell has come of age. BioScience 70, 1082–1092.

    Article  Google Scholar 

  • Ueno, S., Aoki, K., and Tsumura, Y. (2009). Generation of Expressed Sequence Tags and development of microsatellite markers for Castanopsis sieboldii var. sieboldii (Fagaceae). Ann For Sci 66, 509.

    Article  Google Scholar 

  • Webb, C.O., Ackerly, D.D., McPeek, M.A., and Donoghue, M.J. (2002). Phylogenies and community ecology. Annu Rev Ecol Syst 33, 475–505.

    Article  Google Scholar 

  • Wright, J.S. (2002). Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130, 1–14.

    Article  PubMed  Google Scholar 

  • Ye, D., Dong, R., Mi, X., Lu, W., Zheng, Z., Yu, M., Ni, J., and Chen, J. (2017). Characteristics and effects of sprouting on species diversity in a subtropical evergreen broad-leaved forest in Gutianshan, East China. Biodiversity Sci 25, 393–400.

    Article  Google Scholar 

  • Zhu, K., Woodall, C.W., Monteiro, J.V.D., and Clark, J.S. (2015). Prevalence and strength of density-dependent tree recruitment. Ecology 96, 2319–2327.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31000000) and the National Key Research and Development Program of China (2017YFA0605103). NGS was funded by the US National Science Foundation (NSF DEB-2029997). We thank Zhejiang Qianjiangyuan Forest Biodiversity National Observation and Research Station for providing tree census data and all the field assistants who were involved in the data collection of tree census in the Gutianshan forest dynamics plot. We are grateful to Dr. Baocai Han and Mr. Zhengbiao Lai for their help with sampling in the field. Special thanks to Drs. Yunquan Wang and Weiwei Wang for their sharing of seedling census data and crown diameter data, respectively. We are grateful to Dr. Richard Condit for his suggestions for improving the manuscript, Drs. Diane Bailleul and Tristan Marshall for their suggestions on data analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Liang or Keping Ma.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Mi, X., Chen, L. et al. Differential impacts of adult trees on offspring and non-offspring recruits in a subtropical forest. Sci. China Life Sci. 65, 1905–1913 (2022). https://doi.org/10.1007/s11427-021-2148-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-2148-7

Keywords

Navigation