Skip to main content
Log in

Autophagy mediates a direct synergistic interaction during co-transmission of two distinct arboviruses by insect vectors

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Multiple viral infections in insect vectors with synergistic effects are common in nature, but the underlying mechanism remains elusive. Here, we find that rice gall dwarf reovirus (RGDV) facilitates the transmission of rice stripe mosaic rhabdovirus (RSMV) by co-infected leafhopper vectors. RSMV nucleoprotein (N) alone activates complete anti-viral autophagy, while RGDV nonstructural protein Pns11 alone induces pro-viral incomplete autophagy. In co-infected vectors, RSMV exploits Pns11-induced autophagosomes to assemble enveloped virions via N-Pns11-ATG5 interaction. Furthermore, RSMV could effectively propagate in Sf9 cells. Expression of Pns11 in Sf9 cells or leafhopper vectors causes the recruitment of N from the ER to Pns11-induced autophagosomes and inhibits N-induced complete autophagic flux, finally facilitating RSMV propagation. In summary, these results demonstrate a previously unappreciated role of autophagy in the regulation of the direct synergistic interaction during co-transmission of two distinct arboviruses by insect vectors and reveal the functional importance of virus-induced autophagosomes in rhabdovirus assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aman, Y., Schmauck-Medina, T., Hansen, M., Morimoto, R.I., Simon, A. K., Bjedov, I., Palikaras, K., Simonsen, A., Johansen, T., Tavernarakis, N., et al. (2021). Autophagy in healthy aging and disease. Nat Aging 1, 634–650.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chávez-Calvillo, G., Contreras-Paredes, C.A., Mora-Macias, J., Noa-Carrazana, J.C., Serrano-Rubio, A.A., Dinkova, T.D., Carrillo-Tripp, M., and Silva-Rosales, L. (2016). Antagonism or synergism between papaya ringspot virus and papaya mosaic virus in Carica papaya is determined by their order of infection. Virology 489, 179–191.

    Article  PubMed  Google Scholar 

  • Chen, Y., Chen, Q., Li, M., Mao, Q., Chen, H., Wu, W., Jia, D., and Wei, T. (2017). Autophagy pathway induced by a plant virus facilitates viral spread and transmission by its insect vector. PLoS Pathog 13, e1006727.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Lu, C., Li, M., Wu, W., Zhou, G., and Wei, T. (2016). Adverse effects of Rice gall dwarf virus upon its insect vector Recilia dorsalis (Hemiptera: Cicadellidae). Plant Dis 100, 784–790.

    Article  CAS  PubMed  Google Scholar 

  • Choi, Y., Bowman, J.W., and Jung, J.U. (2018). Autophagy during viral infection—a double-edged sword. Nat Rev Microbiol 16, 341–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, B., Lin, H., Yu, J., Yu, J., and Hu, Z. (2019). Autophagy and the immune response. Adv Exp Med Biol 1206, 595–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietzgen, R.G., Kondo, H., Goodin, M.M., Kurath, G., and Vasilakis, N. (2017). The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins. Virus Res 227, 158–170.

    Article  CAS  PubMed  Google Scholar 

  • Dong, X., and Levine, B. (2013). Autophagy and viruses: adversaries or allies? J Innate Immun 5, 480–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiallo-Olivé, E., Pan, L.L., Liu, S.S., and Navas-Castillo, J. (2020). Transmission of Begomoviruses and other whitefly-borne viruses: dependence on the vector species. Phytopathology 110, 10–17.

    Article  PubMed  Google Scholar 

  • Fukuda, M. (1991). Lysosomal membrane glycoproteins. Structure, biosynthesis, and intracellular trafficking. J Biol Chem 266, 21327–21330.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Sebastián, S., López-Vidal, J., and Escribano, J.M. (2014) Significant productivity improvement of the baculovirus expression vector system by engineering a novel expression cassette. PLoS One 9, e96562.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray, S., and Gildow, F.E. (2003). luteovirus-aphid interactions. Annu Rev Phytopathol 41, 539–566.

    Article  CAS  PubMed  Google Scholar 

  • Heaton, N.S., and Randall, G. (2010). Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8, 422–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogenhout, S.A., Ammar, E.D., Whitfield, A.E., and Redinbaugh, M.G. (2008). Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46, 327–359.

    Article  CAS  PubMed  Google Scholar 

  • Ichimiya, T., Yamakawa, T., Hirano, T., Yokoyama, Y., Hayashi, Y., Hirayama, D., Wagatsuma, K., Itoi, T., and Nakase, H. (2020). Autophagy and autophagy-related diseases: a review. Int J Mol Sci 21, 8974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irekeola, A.A., Engku Nur Syafirah, E.A.R., Islam, M.A., and Shueb, R.H. (2022). Global prevalence of dengue and chikungunya coinfection: a systematic review and meta-analysis of 43,341 participants. Acta Tropica 231, 106408.

    Article  PubMed  Google Scholar 

  • Jackson, A.O., Dietzgen, R.G., Goodin, M.M., Bragg, J.N., and Deng, M. (2005). Biology of plant rhabdoviruses. Annu Rev Phytopathol 43, 623–660.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, W.T. (2015). Viruses and the autophagy pathway. Virology 479–480, 450–456.

    Article  PubMed  Google Scholar 

  • Jayakar, H.R., Jeetendra, E., and Whitt, M.A. (2004). Rhabdovirus assembly and budding. Virus Res 106, 117–132.

    Article  CAS  PubMed  Google Scholar 

  • Jia, D., Chen, H., Zheng, A., Chen, Q., Liu, Q., Xie, L., Wu, Z., and Wei, T. (2012). Development of an insect vector cell culture and RNA interference system to investigate the functional role of fijivirus replication protein. J Virol 86, 5800–5807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, D., Luo, G., Shi, W., Liu, Y., Liu, H., Zhang, X., and Wei, T. (2022)a. Rice gall dwarf virus promotes the propagation and transmission of rice stripe mosaic virus by co-infected insect vectors. Front Microbiol 13, 834712.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia, D., Liang, Q., Liu, H., Li, G., Zhang, X., Chen, Q., Wang, A., and Wei, T. (2022b). A nonstructural protein encoded by a rice reovirus induces an incomplete autophagy to promote viral spread in insect vectors. PLoS Pathog 18, e1010506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, D., Liu, H., Zhang, J., Wan, W., Wang, Z., Zhang, X., Chen, Q., and Wei, T. (2022c). Polyamine-metabolizing enzymes are activated to promote the proper assembly of rice stripe mosaic virus in insect vectors. Stress Biol 2, 10.

    Article  Google Scholar 

  • Jia, D., Mao, Q., Chen, Y., Liu, Y., Chen, Q., Wu, W., Zhang, X., Chen, H., Li, Y., and Wei, T. (2017). Insect symbiotic bacteria harbour viral pathogens for transovarial transmission. Nat Microbiol 2, 17025.

    Article  PubMed  Google Scholar 

  • Kimura, I., and Omura, T. (1988). Leafhopper cell cultures as a means for phytoreovirus research. Adv Dis Vector Res 5, 111–135.

    Google Scholar 

  • Kimura, I. (1986). A study of rice dwarf virus in vector cell monolayers by fluorescent antibody focus counting. J Gen Virol 67, 2119–2124.

    Article  Google Scholar 

  • Leta, S., Beyene, T.J., De Clercq, E.M., Amenu, K., Kraemer, M.U.G., and Revie, C.W. (2018). Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int J Infect Dis 67, 25–35.

    Article  PubMed  Google Scholar 

  • Lindholm, D.A., Myers, T., Widjaja, S., Grant, E.M., Telu, K., Lalani, T., Fraser, J., Fairchok, M., Ganesan, A., Johnson, M.D., et al. (2017). Mosquito exposure and Chikungunya and Dengue infection among travelers during the Chikungunya outbreak in the Americas. Am J Trop Med Hyg 96, 903–912.

    PubMed  PubMed Central  Google Scholar 

  • Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Mann, K.S., and Dietzgen, R.G. (2014). Plant rhabdoviruses: new insights and research needs in the interplay of negative-strand RNA viruses with plant and insect hosts. Arch Virol 159, 1889–1900.

    Article  CAS  PubMed  Google Scholar 

  • Mao, Q., Wu, W., Liao, Z., Li, J., Jia, D., Zhang, X., Chen, Q., Chen, H., Wei, J., and Wei, T. (2019). Viral pathogens hitchhike with insect sperm for paternal transmission. Nat Commun 10, 955.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao, Q., Zheng, S., Han, Q., Chen, H., Ma, Y., Jia, D., Chen, Q., and Wei, T. (2013). New model for the genesis and maturation of viroplasms induced by fijiviruses in insect vector cells. J Virol 87, 6819–6828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Méndez-Lozano, J., Torres-Pacheco, I., Fauquet, C.M., and Rivera-Bustamante, R.F. (2003). Interactions between geminiviruses in a naturally occurring mixture: Pepper huasteco virus and Pepper golden mosaic virus. Phytopathology 93, 270–277.

    Article  PubMed  Google Scholar 

  • Moya Fernández, M.B., Liu, W., Zhang, L., Hajano, J.U.D., and Wang, X. (2021). Interplay of rice stripe virus and rice black streaked dwarf virus during their acquisition and accumulation in insect vector. Viruses 13, 1121.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pankiv, S., Clausen, T.H., Lamark, T., Brech, A., Bruun, J.A., Outzen, H., Øvervatn, A., Bjørkøy, G., and Johansen, T. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282, 24131–24145.

    Article  CAS  PubMed  Google Scholar 

  • Rami, A., Benz, A.P., Niquet, J., and Langhagen, A. (2016). Axonal accumulation of lysosomal-associated membrane protein 1 (LAMP1) accompanying alterations of autophagy dynamics in the rat hippocampus upon seizure-induced injury. Neurochem Res 41, 53–63.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues, N.B., Godoy, R.S.M., Orfano, A.S., Chaves, B.A., Campolina, T.B., Costa, B.A., Félix, L.S., Silva, B.M., Norris, D.E., Pimenta, P.F.P., et al. (2021). Brazilian Aedes aegypti as a competent vector for multiple complex arboviral coinfections. J Infect Dis 224, 101–108.

    Article  PubMed  Google Scholar 

  • Romanov, J., Walczak, M., Ibiricu, I., Schüchner, S., Ogris, E., Kraft, C., and Martens, S. (2012). Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J 31, 4304–4317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sou, Y.S., Waguri, S., Iwata, J., Ueno, T., Fujimura, T., Hara, T., Sawada, N., Yamada, A., Mizushima, N., Uchiyama, Y., et al. (2008). The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 19, 4762–4775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas-Mejía, P., Vega-Arreguín, J., Chávez-Calvillo, G., Ibarra-Laclette, E., and Silva-Rosales, L. (2020). Differential accumulation of innate- and adaptive-immune-response-derived transcripts during antagonism between papaya ringspot virus and papaya mosaic virus. Viruses 12, 230.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vikram, K., Nagpal, B.N., Gupta, S.K., Tuli, N.R., Singh, H., Srivastava, A., and Saxena, R. (2021). Co-distribution of dengue and Chikungunya viruses in Aedes mosquitoes of Delhi, India. J Vector Borne Dis 58, 386–390.

    PubMed  Google Scholar 

  • Wang, L.L., Wang, X.R., Wei, X.M., Huang, H., Wu, J.X., Chen, X.X., Liu, S.S., and Wang, X.W. (2016). The autophagy pathway participates in resistance to tomato yellow leaf curl virus infection in whiteflies. Autophagy 12, 1560–1574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Lu, L., Zeng, M., Wang, D., Zhang, T., Xie, Y., Gao, S., Fu, S., Zhou, X., and Wu, J. (2022a). Rice black-streaked dwarf virus P10 promotes phosphorylation of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) to induce autophagy in Laodelphax striatellus. Autophagy 18, 745–764.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Guo, H., Zhu-Salzman, K., Ge, F., and Sun, Y. (2022b). PEBP balances apoptosis and autophagy in whitefly upon arbovirus infection. Nat Commun 13, 846.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weaver, S.C., Charlier, C., Vasilakis, N., and Lecuit, M. (2018). Zika, Chikungunya, and other emerging vector-borne viral diseases. Annu Rev Med 69, 395–408.

    Article  CAS  PubMed  Google Scholar 

  • Wei, T., Kikuchi, A., Moriyasu, Y., Suzuki, N., Shimizu, T., Hagiwara, K., Chen, H., Takahashi, M., Ichiki-Uehara, T., and Omura, T. (2006). The spread of rice dwarf virus among cells of its insect vector exploits virus-induced tubular structures. J Virol 80, 8593–8602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, T., and Li, Y. (2016). Rice reoviruses in insect vectors. Annu Rev Phytopathol 54, 99–120.

    Article  CAS  PubMed  Google Scholar 

  • Wu, W., Huang, L., Mao, Q., Wei, J., Li, J., Zhao, Y., Zhang, Q., Jia, D., and Wei, T. (2019). Interaction of viral pathogen with porin channels on the outer membrane of insect bacterial symbionts mediates their joint transovarial transmission. Phil Trans R Soc B 374, 20180320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, L.H. (1986). Research on rice virus disease in China. Trop Agr Res S 19, 45–50.

    Google Scholar 

  • Yang, X., Huang, J., Liu, C., Chen, B., Zhang, T., and Zhou, G. (2017). Rice stripe mosaic virus, a novel Cytorhabdovirus infecting rice via leafhopper transmission. Front Microbiol 7, 2140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, X., Jia, D., Wang, Z., Li, G., Chen, M., Liang, Q., Zhou, Y., Liu, H., Xiao, M., Li, S., et al. (2021). A plant reovirus hijacks endoplasmic reticulum-associated degradation machinery to promote efficient viral transmission by its planthopper vector under high temperature conditions. PLoS Pathog 17, e1009347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, P., Sun, X., Li, P., Sun, J., Yue, Y., Wei, J., Wei, T., and Jia, D. (2019). Infection characteristics of Rice stripe mosaic virus in the body of the vector leafhoppers. Front Microbiol 9, 3258.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, X.F., Zeng, T., Xie, Y., Zheng, Y., Wang, H., Lin, H., Wang, Z., and Wei, T. (2021). Rice yellow stunt virus activates polyamine biosynthesis to promote viral propagation in insect vectors by disrupting ornithine decarboxylase antienzyme function. Sci China Life Sci 64, 1522–1532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, L., Chen, H., Liu, H., Xie, L., and Wei, T. (2015). Assembly of viroplasms by viral nonstructural protein Pns9 is essential for persistent infection of rice gall dwarf virus in its insect vector. Virus Res 196, 162–169.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31920103014, 31970160) and the Natural Science Foundation of Fujian Province (2020J06015). The antibodies Bip, ATG5, ATG8, Lamp1, and p62 were produced by Genscript USA Innovation Company (Nanjing), which is approved by the Science Technology Department of Jiangsu Province, China with approval number SYXK (Su) 2018-0015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiyun Wei.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Electronic Supplementary Material

11427_2022_2228_MOESM1_ESM.pdf

Autophagy mediates a direct synergistic interaction during co-transmission of two distinct arboviruses by insect vectors

Supplementary material, approximately 107 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, D., Liang, Q., Chen, H. et al. Autophagy mediates a direct synergistic interaction during co-transmission of two distinct arboviruses by insect vectors. Sci. China Life Sci. 66, 1665–1681 (2023). https://doi.org/10.1007/s11427-022-2228-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2228-y

Navigation