Skip to main content
Log in

Exercise-induced microbial changes in preventing type 2 diabetes

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The metabolic benefits associated with long-term physical activity are well appreciated and growing evidence suggests that it involves the gut microbiota. Here we re-evaluated the link between exercise-induced microbial changes and those associated with prediabetes and diabetes. We found that the relative abundances of substantial amounts of diabetes-associated metagenomic species associated negatively with physical fitness in a Chinese athlete students cohort. We additionally showed that those microbial changes correlated more with handgrip strength, a simple but valuable biomarker suggestive of the diabetes states, than maximum oxygen intake, one of the key surrogates for endurance training. Moreover, the causal relationships among exercise, risks for diabetes, and gut microbiota were explored based on mediation analysis. We propose that the protective roles of exercise against type 2 diabetes are mediated, at least partly, by the gut microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argyridou, S., Bernieh, D., Henson, J., Edwardson, C.L., Davies, M.J., Khunti, K., Suzuki, T., and Yates, T. (2020). Associations between physical activity and trimethylamine N-oxide in those at risk of type 2 diabetes. BMJ Open Diab Res Care 8, e001359.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barton, W., Penney, N.C., Cronin, O., Garcia-Perez, I., Molloy, M.G., Holmes, E., Shanahan, F., Cotter, P.D., and O’Sullivan, O. (2018). The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut 67, 625–633.

    CAS  PubMed  Google Scholar 

  • Caspersen, C.J., Powell, K.E., and Christenson, G.M. (1985). Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep 100, 126–131.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Celis-Morales, C.A., Petermann, F., Hui, L., Lyall, D.M., Iliodromiti, S., McLaren, J., Anderson, J., Welsh, P., Mackay, D.F., Pell, J.P., et al. (2017). Associations between diabetes and both cardiovascular disease and all-cause mortality are modified by grip strength: evidence from UK Biobank, a prospective population-based cohort study. Diabetes Care 40, 1710–1718.

    Article  PubMed  Google Scholar 

  • Cerdá, B., Pérez, M., Pérez-Santiago, J.D., Tornero-Aguilera, J.F., González-Soltero, R., and Larrosa, M. (2016). Gut microbiota modification: another piece in the puzzle of the benefits of physical exercise in health? Front Physiol 7, 51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatard, J.C., Mujika, I., Guy, C., and Lacour, J.R. (1999). Anaemia and iron deficiency in athletes. Sports Med 27, 229–240.

    Article  CAS  PubMed  Google Scholar 

  • Circu, M.L., and Aw, T.Y. (2011). Redox biology of the intestine. Free Radic Res 45, 1245–1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contrepois, K., Wu, S., Moneghetti, K.J., Hornburg, D., Ahadi, S., Tsai, M. S., Metwally, A.A., Wei, E., Lee-McMullen, B., Quijada, J.V., et al. (2020). Molecular choreography of acute exercise. Cell 181, 1112–1130.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Depommier, C., Everard, A., Druart, C., Plovier, H., Van Hul, M., Vieira-Silva, S., Falony, G., Raes, J., Maiter, D., Delzenne, N.M., et al. (2019). Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med 25, 1096–1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egli, L., Lecoultre, V., Theytaz, F., Campos, V., Hodson, L., Schneiter, P., Mittendorfer, B., Patterson, B.W., Fielding, B.A., Gerber, P.A., et al. (2013). Exercise prevents fructose-induced hypertriglyceridemia in healthy young subjects. Diabetes 62, 2259–2265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estaki, M., Pither, J., Baumeister, P., Little, J.P., Gill, S.K., Ghosh, S., Ahmadi-Vand, Z., Marsden, K.R., and Gibson, D.L. (2016). Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome 4, 42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans, C.C., LePard, K.J., Kwak, J.W., Stancukas, M.C., Laskowski, S., Dougherty, J., Moulton, L., Glawe, A., Wang, Y., Leone, V., et al. (2014). Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS ONE 9, e92193.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grahnemo, L., Nethander, M., Coward, E., Gabrielsen, M.E., Sree, S., Billod, J.M., Engstrand, L., Abrahamsson, S., Langhammer, A., Hveem, K., et al. (2022). Cross-sectional associations between the gut microbe Ruminococcus gnavus and features of the metabolic syndrome. Lancet Diabetes Endocrinol 10, 481–483.

    Article  PubMed  Google Scholar 

  • Han, M., Yang, K., Yang, P., Zhong, C., Chen, C., Wang, S., Lu, Q., and Ning, K. (2020). Stratification of athletes’ gut microbiota: the multifaceted hubs associated with dietary factors, physical characteristics and performance. Gut Microbes 12, 1842991.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hannou, S.A., Haslam, D.E., McKeown, N.M., and Herman, M.A. (2018). Fructose metabolism and metabolic disease. J Clin Investigation 128, 545–555.

    Article  Google Scholar 

  • He, S., Lei, W., Li, J., Yu, K., Yu, Y., Zhou, L., Zhang, X., He, M., Guo, H., Yang, H., et al. (2019). Relation of platelet parameters with incident cardiovascular disease (The Dongfeng-Tongji Cohort Study). Am J Cardiol 123, 239–248.

    Article  PubMed  Google Scholar 

  • Heber, S., and Volf, I. (2015). Effects of physical (in)activity on platelet function. Biomed Res Int 2015, 1–11.

    Article  Google Scholar 

  • Heyward, V.H., and Gibson, A.L. (2014). Advanced Fitness Assessment and Exercise Prescription. 7th ed. Mitcham: Human Kinetics.

    Google Scholar 

  • Hoffman, N.J., Parker, B.L., Chaudhuri, R., Fisher-Wellman, K.H., Kleinert, M., Humphrey, S.J., Yang, P., Holliday, M., Trefely, S., Fazakerley, D.J., et al. (2015). Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab 22, 922–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irving, B.A., Davis, C.K., Brock, D.W., Weltman, J.Y., Swift, D., Barrett, E. J., Gaesser, G.A., and Weltman, A. (2008). Effect of exercise training intensity on abdominal visceral fat and body composition. Med Sci Sports Exerc 40, 1863–1872.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeukendrup, A.E. (2017). Training the gut for athletes. Sports Med 47, 101–110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson, R.J., Nakagawa, T., Sanchez-Lozada, L.G., Shafiu, M., Sundaram, S., Le, M., Ishimoto, T., Sautin, Y.Y., and Lanaspa, M.A. (2013). Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes 62, 3307–3315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson, F.H., Nookaew, I., and Nielsen, J. (2014). Metagenomic data utilization and analysis (MEDUSA) and construction of a global gut microbial gene catalogue. PLoS Comput Biol 10, e1003706.

    Article  PubMed  PubMed Central  Google Scholar 

  • Knudsen, N.H., Stanya, K.J., Hyde, A.L., Chalom, M.M., Alexander, R.K., Liou, Y.H., Starost, K.A., Gangl, M.R., Jacobi, D., Liu, S., et al. (2020). Interleukin-13 drives metabolic conditioning of muscle to endurance exercise. Science 368, eaat3987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh, A., De Vadder, F., Kovatcheva-Datchary, P., and Bäckhed, F. (2016). From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345.

    Article  CAS  PubMed  Google Scholar 

  • Koh, A., Molinaro, A., Ståhlman, M., Khan, M.T., Schmidt, C., Mannerås-Holm, L., Wu, H., Carreras, A., Jeong, H., Olofsson, L.E., et al. (2018). Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175, 947–961.e17.

    Article  CAS  PubMed  Google Scholar 

  • Kratz, A., Wood, M.J., Siegel, A.J., Hiers, J.R., and Van Cott, E.M. (2006). Effects of marathon running on platelet activation markers: direct evidence for in vivo platelet activation. Am J Clin Pathol 125, 296–300.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn, M. (2008). Building predictive models in R using the caret package. J Stat Soft 28, 26.

    Article  Google Scholar 

  • Lewis, G.D., Farrell, L., Wood, M.J., Martinovic, M., Arany, Z., Rowe, G. C., Souza, A., Cheng, S., McCabe, E.L., Yang, E., et al. (2010). Metabolic signatures of exercise in human plasma. Sci Transl Med 2, 33ra37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis, S.J., and Heaton, K.W. (1999). The metabolic consequences of slow colonic transit. Am J Gastroenterol 94, 2010–2016.

    Article  CAS  PubMed  Google Scholar 

  • Lindstrom, J., and Tuomilehto, J. (2003). The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care 26, 725–731.

    Article  PubMed  Google Scholar 

  • Liu, F., Kondo, T., and Toda, Y. (1993). Brief physical inactivity prolongs colonic transit time in elderly active men. Int J Sports Med 14, 465–467.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Wang, Y., Ni, Y., Cheung, C.K.Y., Lam, K.S.L., Wang, Y., Xia, Z., Ye, D., Guo, J., Tse, M.A., et al. (2020). Gut microbiome fermentation determines the efficacy of exercise for diabetes prevention. Cell Metab 31, 77–91.e5.

    Article  CAS  PubMed  Google Scholar 

  • Luan, X., Tian, X., Zhang, H., Huang, R., Li, N., Chen, P., and Wang, R. (2019). Exercise as a prescription for patients with various diseases. J Sport Health Sci 8, 422–441.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo, B., Xiang, D., Wu, D., Liu, C., Fang, Y., Chen, P., and Hu, Y.P. (2018). Hepatic PHD2/HIF-1α axis is involved in postexercise systemic energy homeostasis. FASEB J 32, 4670–4680.

    Article  CAS  PubMed  Google Scholar 

  • Magkos, F., Hjorth, M.F., and Astrup, A. (2020). Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 16, 545–555.

    Article  PubMed  Google Scholar 

  • Mairbäurl, H. (2013). Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. Front Physiol 4, 332.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manda, C.M., Hokimoto, T., Okura, T., Isoda, H., Shimano, H., and Wagatsuma, Y. (2020). Handgrip strength predicts new prediabetes cases among adults: A prospective cohort study. Prev Med Rep 17, 101056.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mardinoglu, A., Wu, H., Bjornson, E., Zhang, C., Hakkarainen, A., Räsänen, S.M., Lee, S., Mancina, R.M., Bergentall, M., Pietiläinen, K. H., et al. (2018). An integrated understanding of the rapid metabolic benefits of a carbohydrate-restricted diet on hepatic steatosis in humans. Cell Metab 27, 559–571.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maynar, M., Llerena, F., Bartolomé, I., Alves, J., Robles, M.C., Grijota, F. J., and Muñoz, D. (2018). Seric concentrations of copper, chromium, manganesum, nickel and selenium in aerobic, anaerobic and mixed professional sportsmen. J Int Soc Sports Nutr 15, 8.

    Article  PubMed  PubMed Central  Google Scholar 

  • McMurdie, P.J., and Holmes, S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemet, I., Saha, P.P., Gupta, N., Zhu, W., Romano, K.A., Skye, S.M., Cajka, T., Mohan, M.L., Li, L., Wu, Y., et al. (2020). A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell 180, 862–877.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oettle, G.J. (1991). Effect of moderate exercise on bowel habit. Gut 32, 941–944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto, T., Morino, K., Ugi, S., Nakagawa, F., Lemecha, M., Ida, S., Ohashi, N., Sato, D., Fujita, Y., and Maegawa, H. (2019). Microbiome potentiates endurance exercise through intestinal acetate production. Am J Physiol Endocrinol Metab 316, E956–E966.

    Article  CAS  PubMed  Google Scholar 

  • Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., and Wagner, H. (2015). vegan: community ecology package. R package version 22–1. http://CRANR-projectorg/package=vegan.

  • Ouwerkerk, J.P., van der Ark, K.C.H., Davids, M., Claassens, N.J., Finestra, T.R., de Vos, W.M., and Belzer, C. (2016). Adaptation of Akkermansia muciniphila to the oxic-anoxic interface of the mucus layer. Appl Environ Microbiol 82, 6983–6993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang, X., Cirillo, P., Sautin, Y., McCall, S., Bruchette, J.L., Diehl, A.M., Johnson, R.J., and Abdelmalek, M.F. (2008). Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol 48, 993–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, Z., Hu, Y., Huang, Z., Han, N., Li, Y., Zhuang, X., Yin, J., Peng, H., Gao, Q., Zhang, W., et al. (2022). Alterations in gut microbiota and metabolites associated with altitude-induced cardiac hypertrophy in rats during hypobaric hypoxia challenge. Sci China Life Sci 65, 2093–2113.

    Article  CAS  PubMed  Google Scholar 

  • Peters, H.P., De Vries, W.R., Vanberge-Henegouwen, G.P., and Akkermans, L.M. (2001). Potential benefits and hazards of physical activity and exercise on the gastrointestinal tract. Gut 48, 435–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plovier, H., Everard, A., Druart, C., Depommier, C., Van Hul, M., Geurts, L., Chilloux, J., Ottman, N., Duparc, T., Lichtenstein, L., et al. (2017). A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 23, 107–113.

    Article  CAS  PubMed  Google Scholar 

  • Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., et al. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60.

    Article  CAS  PubMed  Google Scholar 

  • Savikj, M., and Zierath, J.R. (2020). Train like an athlete: applying exercise interventions to manage type 2 diabetes. Diabetologia 63, 1491–1499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayer, A.A., Syddall, H.E., Dennison, E.M., Martin, H.J., Phillips, D.I.W., Cooper, C., and Byrne, C.D. (2007). Grip strength and the metabolic syndrome: findings from the Hertfordshire Cohort Study. QJM 100, 707–713.

    Article  CAS  PubMed  Google Scholar 

  • Scheiman, J., Luber, J.M., Chavkin, T.A., MacDonald, T., Tung, A., Pham, L.D., Wibowo, M.C., Wurth, R.C., Punthambaker, S., Tierney, B.T., et al. (2019). Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med 25, 1104–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigal, R.J., Kenny, G.P., Boulé, N.G., Wells, G.A., Prud’homme, D., Fortier, M., Reid, R.D., Tulloch, H., Coyle, D., Phillips, P., et al. (2007). Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med 147, 357–369.

    Article  PubMed  Google Scholar 

  • Stanford, K.I., Lynes, M.D., Takahashi, H., Baer, L.A., Arts, P.J., May, F.J., Lehnig, A.C., Middelbeek, R.J.W., Richard, J.J., So, K., et al. (2018). 12,13-diHOME: an exercise-induced lipokine that increases skeletal muscle fatty acid uptake. Cell Metab 27, 1111–1120.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephen, A.M., Wiggins, H.S., and Cummings, J.H. (1987). Effect of changing transit time on colonic microbial metabolism in man. Gut 28, 601–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storey, J.D., Bass, A.J., Dabney, A., and Robinson, D. (2015). qvalue: Q-value estimation for false discovery rate control. R package version 2100. http://githubcom/jdstorey/qvalue.

  • Team, R.C. (2015). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R.project.org/.

  • Tian, M., Liu, H., Chen, S., Yang, Z., Tao, W., Peng, S., Che, H., and Jin, L. (2022). Report on the 3rd Board Meeting of the International Human Phenome Consortium. Phenomics doi: https://doi.org/10.1007/s43657-022-00065-y.

  • Tingley, D., Yamamoto, T., Hirose, K., Keele, L., and Imai, K. (2014). mediation: R package for causal mediation analysis. J Stat Soft 59, 1–38.

    Article  Google Scholar 

  • Wander, P.L., Boyko, E.J., Leonetti, D.L., McNeely, M.J., Kahn, S.E., and Fujimoto, W.Y. (2013). Change in visceral adiposity independently predicts a greater risk of developing type 2 diabetes over 10 years in Japanese Americans. Diabetes Care 36, 289–293.

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson, J.D. (2014). Type 2 diabetes as a redox disease. Lancet 383, 841–843.

    Article  PubMed  Google Scholar 

  • Weintraub, L.R., Conrad, M.E., and Crosby, W.H. (1965). Regulation of the intestinal absorption of iron by the rate of erythropoiesis. Br J Haematol 11, 432–438.

    Article  CAS  PubMed  Google Scholar 

  • Wichmann, A., Allahyar, A., Greiner, T.U., Plovier, H., Lundén, G.Ö., Larsson, T., Drucker, D.J., Delzenne, N.M., Cani, P.D., and Bäckhed, F. (2013). Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe 14, 582–590.

    Article  CAS  PubMed  Google Scholar 

  • Wu, D., Cao, W., Xiang, D., Hu, Y.P., Luo, B., and Chen, P. (2020a). Exercise induces tissue hypoxia and HIF-1α redistribution in the small intestine. J Sport Health Sci 9, 82–89.

    Article  PubMed  Google Scholar 

  • Wu, H., Esteve, E., Tremaroli, V., Khan, M.T., Caesar, R., Mannerås-Holm, L., Ståhlman, M., Olsson, L.M., Serino, M., Planas-Fèlix, M., et al. (2017). Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 23, 850–858.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H., Tremaroli, V., Schmidt, C., Lundqvist, A., Olsson, L.M., Krämer, M., Gummesson, A., Perkins, R., Bergström, G., and Bäckhed, F. (2020b). The gut microbiota in prediabetes and diabetes: a population-based cross-sectional study. Cell Metab 32, 379–390.e3.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, X., Xing, X., Gupta, M., Keber, F.C., Lopez, J.G., Lee, Y.C.J., Roichman, A., Wang, L., Neinast, M.D., Donia, M.S., et al. (2022). Gut bacterial nutrient preferences quantified in vivo. Cell 185, 3441–3456.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H.J., He, J., Pan, L.L., Ma, Z.M., Han, C.K., Chen, C.S., Chen, Z., Han, H.W., Chen, S., Sun, Q., et al. (2016). Effects of moderate and vigorous exercise on nonalcoholic fatty liver disease. JAMA Intern Med 176, 1074–1082.

    Article  PubMed  Google Scholar 

  • Zhao, L., Ni, Y., Su, M., Li, H., Dong, F., Chen, W., Wei, R., Zhang, L., Guiraud, S.P., Martin, F.P., et al. (2017). High throughput and quantitative measurement of microbial metabolome by gas chromatography/mass spectrometry using automated alkyl chloroformate derivatization. Anal Chem 89, 5565–5577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, S., Jang, C., Liu, J., Uehara, K., Gilbert, M., Izzo, L., Zeng, X., Trefely, S., Fernandez, S., Carrer, A., et al. (2020). Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature 579, 586–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China (2020YFA0803800, 2019YFA0801900, 2018YFA0800300, and 2022YFA0806400), the National Natural Science Foundation of China (31971097, 31671242, 32150610475, and 31971074), Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (ZYYCXTD-D-202001), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, the Construction Project of High-Level Local Universities in Shanghai, Shanghai “Science and Technology Innovation Action Plan” Social Development Science and Technology Reach Project (22dz1204600), and Shanghai Municipal Science and Technology Major Project (2017SHZDZX01). The authors would like to thank Dr. Fredrik Bäckhed from University of Gothenburg for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Wu, Tiemin Liu or Ru Wang.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, T., Wang, H., Lin, K. et al. Exercise-induced microbial changes in preventing type 2 diabetes. Sci. China Life Sci. 67, 892–899 (2024). https://doi.org/10.1007/s11427-022-2272-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2272-3

Navigation