Skip to main content
Log in

Cranial morphology of the Silurian sarcopterygian Guiyu oneiros (Gnathostomata: Osteichthyes)

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Cranial morphological features of the stem-group sarcopterygian Guiyu oneiros Zhu et al., 2009 provided here include the dermal bone pattern and anatomical details of the ethmosphenoid. Based on those features, we restored, for the first time, the skull roof bone pattern in the Guiyu clade that comprises Psarolepis and Achoania. Comparisons with Onychodus, Achoania, coelacanths, and actinopterygians show that the posterior nostril enclosed by the preorbital or the preorbital process is shared by actinopterygians and sarcopterygians, and the lachrymals in sarcopterygians and actinopterygians are not homologous. The endocranium closely resembles that of Psarolepis, Achoania and Onychodus; however, the attachment area of the vomer possesses irregular ridges and grooves as in Youngolepis and Diabolepis. The orbito-nasal canal is positioned mesial to the nasal capsule as in Youngolepis and porolepiforms. The position of the hypophysial canal at the same level or slightly anterior to the ethmoid articulation represents a synapmorphy of the Guiyu clade. The large attachment area of the basicranial muscle indicates the presence of a well-developed intracranial joint in Guiyu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu M, Zhao W J, Jia L T, et al. The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature, 2009, 458: 469–474

    Article  Google Scholar 

  2. Coates M I. Beyond the age of fishes. Nature, 2009, 458: 413–414

    Article  Google Scholar 

  3. Gross W. Fragliche Actinopterygier-Schuppen aus dem Silur Gotlands. Lethaia, 1968, 1: 184–218

    Article  Google Scholar 

  4. Gross W. Lophosteus superbus Pander, ein Teleostome aus dem Silur Oesels. Lethaia, 1969, 2: 15–47

    Article  Google Scholar 

  5. Gross W. Lophosteus superbus Pander: Zähne, Zahnknochen und besondere Schuppenformen. Lethaia, 1971, 4: 131–152

    Article  Google Scholar 

  6. Janvier P. On the oldest known teleostome fish Andreolepis hedei Gross (Ludlow of Gotland), and the systematic position of the lophosteids. Eesti NSV Teaduste Akad Toimetised Geol, 1978, 27: 88–95

    Google Scholar 

  7. Otto M. Zur systematischen Stellung der Lophosteiden (Obersilur, Pisces inc. sedis). Paläontol Z, 1991, 65: 345–350

    Google Scholar 

  8. Schultze H P. Ausgangsform und Entwicklung der rhombischen Schuppen der Osteichthyes (Pisces). Paläontol Z, 1977, 51: 152–168

    Google Scholar 

  9. Schultze H P, Märss T. Revisiting Lophosteus Pander 1856, a primitive osteichthyan. In: The Gross Symposium 2: Advances in Palaeoichthyology. Acta Universitat Latvien, 2004, 679: 57–78

    Google Scholar 

  10. Botella H, Blom H, Dorka M, et al. Jaws and teeth of the earliest bony fishes. Nature, 2007, 448: 583–586

    Article  Google Scholar 

  11. Zhu M, Yu X B, Janvier P. A primitive fossil fish sheds light on the origin of bony fishes. Nature, 1999, 397: 607–610

    Article  Google Scholar 

  12. Basden A M, Young G C, Coates M I, et al. The most primitive osteichthyan braincase? Nature, 2000, 403: 185–188

    Article  Google Scholar 

  13. Zhu M, Yu X B, Ahlberg P E. A primitive sarcopterygian fish with an eyestalk. Nature, 2001, 410: 81–84

    Article  Google Scholar 

  14. Schultze H P, Cumbaa S L. Dialipina and the characters of basal actinopterygians. In: Ahlberg P E, ed. Major Events in Early Vertebrate Evolution: Palaeontology, Phylogeny and Development. London: Taylor & Francis, 2001. 315–332

    Google Scholar 

  15. Ahlberg P E. Something fishy in the family tree. Nature, 1999, 397: 564–565

    Article  Google Scholar 

  16. Chang M M. Fossil fish up for election. Nature, 2000, 403: 152–153

    Article  Google Scholar 

  17. Brazeau M D. The braincase and jaws of a Devonian ‘acanthodian’ and modern gnathostome origins. Nature, 2009, 457: 305–308

    Article  Google Scholar 

  18. Westoll T S. The origin of the tetrapods. Biol Rev, 1943, 18: 78–98

    Article  Google Scholar 

  19. Yu X B. A new porolepiform-like fish, Psarolepis romeri, gen. et sp. nov. (Sarcopterygii, Osteichthyes) from the Lower Devonian of Yunnan, China. J Vertebr Paleontol, 1998, 18: 261–274

    Article  Google Scholar 

  20. Andrews S M, Long J A, Ahlberg P E, et al. The structure of the sarcopterygian Onychodus jandemarrai n. sp. from Gogo, Western Australia: With a functional interpretation of the skeleton. Trans R Soc Edinb, 2006, 96: 197–307

    Google Scholar 

  21. Lu J, Zhu M. An onychodont fish (Osteichthyes, Sarcopterygii) from the Early Devonian of China, and the evolution of the Onychodontiformes. Proc R Soc B, 2010, 277: 293–299

    Article  Google Scholar 

  22. Jarvik E. Middle and Upper Devonian Porolepiformes from East Greenland with special reference to Glyptolepis groenlandica n. sp., and a discussion on the structure of the head in the Porolepiformes. Meddelelser om Grønland, 1972, 187: 1–307

    Google Scholar 

  23. Zhu M, Yu X B, Wang W, et al. A primitive fish provides key characters bearing on deep osteichthyan phylogeny. Nature, 2006, 441: 77–80

    Article  Google Scholar 

  24. Gardiner B G. The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia. Bull Br Mus Nat Hist, 1984, 37: 173–428

    Google Scholar 

  25. Zhu M, Yu X B. Lower jaw character transitions among major sarcopterygian groups-A survey based on new materials from Yunnan, China. In: Arratia G, Wilson M V H, Cloutier R, eds. Recent Advances in the Origin and Early Radiation of Vertebrates. München: Verlag Dr. Friedrich Pfeil, 2004. 271–286

    Google Scholar 

  26. Long J A. New palaeoniscoid fishes from the Late Devonian and Early Carboniferous of Victoria. Mem Assoc Australas Palaeontol, 1988, 7: 1–64

    Google Scholar 

  27. Friedman M, Blom H. A new actinopterygian from the Famennian of East Greenland and the interrelationships of Devonian ray-finned fishes. J Paleontol, 2006, 80: 1186–1204

    Article  Google Scholar 

  28. Pearson D M, Westoll T S. The Devonian actinopterygian Cheirolepis Agassiz. Trans R Soc Edinb, 1979, 70: 337–399

    Google Scholar 

  29. Schultze H P. Early Devonian actinopterygians (Osteichthyes, Pisces) from Siberia. In: Mark-Kurik E, ed. Fossil Fishes as Living Animals. Tallinn: Academy of Sciences of Estonia, 1992. 233–242

    Google Scholar 

  30. Richter M, Smith M M. A microstructural study of the ganoine tissue of selected lower vertebrates. Zool J Linn Soc, 1995, 114: 173–212

    Article  Google Scholar 

  31. Zhu M, Schultze H P. The oldest sarcopterygian fish. Lethaia, 1997, 30: 293–304

    Google Scholar 

  32. Chang M M. The Braincase of Youngolepis, A Lower Devonian Crossopterygian from Yunnan, South-western China. Stockholm: University of Stockholm, Department of Geology, 1982

    Google Scholar 

  33. Jessen H L. A new choanate fish, Powichthys thorsteinssoni n. g., n. sp., from the Early Lower Devonian of the Canadian Arctic Archipelago. Colloques int Cent Natn Rech Scient, 1975, 218: 213–222

    Google Scholar 

  34. Jessen H L. Lower Devonian Porolepiformes from the Canadian Arctic with special reference to Powichthys thorsteinssoni Jessen. Palaeontogr A, 1980, 167: 180–214

    Google Scholar 

  35. Zhu M, Yu X B. A primitive fish close to the common ancestor of tetrapods and lungfish. Nature, 2002, 418: 767–770

    Article  Google Scholar 

  36. Kulczycki J. Porolepis (Crossopterygii) from the Lower Devonian of the Holy Cross Mountains. Acta Palaeontol Pol, 1960, 5: 65–106

    Google Scholar 

  37. Jarvik E. On the structure of the snout of crossopterygians and lower gnathostomes in general. Zool Bidrag Från Uppsal, 1942, 21: 235–675

    Google Scholar 

  38. Long J A, Barwick R E, Campbell K S W. Osteology and functional morphology of the osteolepiform fish Gogonasus andrewsae Long, 1985, from the Upper Devonian Gogo Formation, Western Australia. Rec West Aust Mus, 1997, 53(Suppl): 1–89

    Google Scholar 

  39. Chang M M, Yu X B. Structure and phylogenetic significance of Diabolichthys speratus gen. et sp. nov., a new dipnoan-like form from the Lower Devonian of eastern Yunnan, China. Proc Linn Soc N S W, 1984, 107: 171–184

    Google Scholar 

  40. Chang M M. Diabolepis and its bearing on the relationships between porolepiforms and dipnoans. Bull Mus Nat d’Histoire Naturelle Paris 4e Sér Sec C, 1995, 17: 235–268

    Google Scholar 

  41. Chang M M. Synapomorphies and scenarios-More characters of Youngolepis betraying its affinity to the Dipnoi. In: Arratia G, Wilson M V H, Cloutier R, eds. Recent Advances in the Origin and Early Radiation of Vertebrates. München: Verlag Dr. Friedrich Pfeil, 2004. 665–686

    Google Scholar 

  42. Clément G, Janvier P. Powichthys spitsbergensis sp. nov., a new member of the Dipnomorpha (Sarcopterygii, lobe-finned fishes) from the Lower Devonian of Spitsbergen, with remarks on basal dipnomorph anatomy. Fossils Strat, 2004, 50: 92–112

    Google Scholar 

  43. Jarvik E. The Devonian tetrapod Ichthyostega. Fossils Strat, 1996, 40: 1–213

    Google Scholar 

  44. Clack J A. Acanthostega gunnari, a Devonian tetrapod from Greenland: The snout, palate and ventral parts of the braincase. Meddelelser Grønland Geosci, 1994, 31: 1–24

    Google Scholar 

  45. Basden A M, Young G C. A primitive actinopterygian neurocranium from the Early Devonian of southeastern Australia. J Vertebr Paleontol, 2001, 21: 754–766

    Article  Google Scholar 

  46. Chang M M, Zhu M. A new Middle Devonian osteolepidid from Qujing, Yunnan. Mem Assoc Australas Palaeontol, 1993, 15: 183–198

    Google Scholar 

  47. Zhu M, Ahlberg P E. The origin of the internal nostril of tetrapods. Nature, 2004, 432: 94–97

    Article  Google Scholar 

  48. Long J A. A new rhizodontiform fish from the Early Carboniferous of Victoria, Australia, with remarks on the phylogenetic position of the group. J Vertebr Paleontol, 1989, 9: 1–17

    Article  Google Scholar 

  49. Johanson Z, Ahlberg P E. A complete primitive rhizodont from Australia. Nature, 1998, 394: 569–573

    Article  Google Scholar 

  50. Johanson Z, Ahlberg P E. Devonian rhizodontids and tristichopterids (Sarcopterygii; Tetrapodmorpha) from East Gondwana. Trans R Soc Edinb, 2001, 92: 43–74

    Google Scholar 

  51. Andrews S M. Interrelationships of crossopterygians. In: Greenwood P H, Miles R S, Patterson C, eds. Interrelationships of Fishes. London: Academic Press, 1973. 137–177

    Google Scholar 

  52. Chang M M, Smith M M. Is Youngolepis a porolepiform? J Vertebr Paleontol, 1992, 12: 294–312

    Article  Google Scholar 

  53. Long J A. On the relationships of Psarolepis and the onychodontiform fishes. J Vertebr Paleontol, 2001, 21: 815–820

    Article  Google Scholar 

  54. Chang M M. “Rhipidistians”, dipnoans and tetrapods. In: Schultze H P, Trueb L, eds. Origins of the Higher Groups of Tetrapods: Controversy and Consensus. New York: Cornell University Press, 1991. 3–28

    Google Scholar 

  55. Jarvik E. Remarks on the structure of the snout in Megalichthys and certain other rhipidistid crossopterygians. Arkiv för Zool, 1966, 19: 41–98

    Google Scholar 

  56. Schultze H P. Patterns of diversity in the skull of jawed fishes. In: Janke J, Hall B K, eds. The Skull, Vol. 2. Chicago: University of Chicago Press, 1993. 189–254

    Google Scholar 

  57. Parrington F R. The identification of the dermal bones of the head. J Linn Soc (Zool), 1967, 47: 231–239

    Article  Google Scholar 

  58. Jollie M. Segment theory and the homologizing of cranial bones. Am Nat, 1981, 118: 785–802

    Article  Google Scholar 

  59. Jollie M. Chordate Morphology. New York: Reinhold Books, 1962

    Google Scholar 

  60. Borgen U J. Homologizations of skull roofing bones between tetrapods and osteolepiform fishes. Palaeontology, 1983, 26: 735–753

    Google Scholar 

  61. Jarvik E. The homologies of frontal and parietal bones in fishes and tetrapods. Colloq Intern Centre Natl Rech Sci, 1967, 163: 181–213

    Google Scholar 

  62. Schultze H P. Nomenclature and homologization of cranial bone in actinopterygians. In: Arratia G, Schultze H P, Wilson M V H, eds. Mesozoic Fishes 4-Homology and Phylogeny. München: Verlag Dr. Friedrich Pfeil, 2008

    Google Scholar 

  63. Jarvik E. Basic Structure and Evolution of Vertebrates, Vol. 1. London: Academic Press, 1980

    Google Scholar 

  64. Forey P L. History of the Coelacanth Fishes. London: Chapman & Hall, 1998

    Google Scholar 

  65. Janvier P. Early Vertebrates. Oxford Monographs on Geology and Geophysics 33. Oxford: Clarendon Press, 1996

    Google Scholar 

  66. Cloutier R, Arratia G. Early diversification of actinopterygians. In: Arratia G, Wilson M V H, Cloutier R, eds. Recent Advances in the Origin and Early Radiation of Vertebrates. München: Verlag Dr. Friedrich Pfeil, 2004. 217–270

    Google Scholar 

  67. Friedman M. Styloichthys as the oldest coelacanth: Implications for early osteichthyan interrelationships. J Syst Palaeontol, 2007, 5: 289–343

    Article  Google Scholar 

  68. Romer A S. The Vertebrate Body. 4th ed. Philadelphia: W. B. Saunders, 1970

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, T., Zhu, M. Cranial morphology of the Silurian sarcopterygian Guiyu oneiros (Gnathostomata: Osteichthyes). Sci. China Earth Sci. 53, 1836–1848 (2010). https://doi.org/10.1007/s11430-010-4089-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-010-4089-6

Keywords

Navigation