Skip to main content
Log in

Extraction of line-of-sight ionospheric observables from GPS data using precise point positioning

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Here we propose a method for extracting line-of-sight ionospheric observables from GPS data using precise point positioning (PPP). The PPP-derived ionospheric observables (PIOs) have identical form with their counterparts obtained from leveling the geometry-free GPS carrier-phase to code (leveling ionospheric observables, LIOs), and are affected by the satellite and receiver inter-frequency biases (IFBs). Based on the co-location experiments, the effects of extracting error arising from the observational noise and multipath on the PIOs and the LIOs are comparatively assessed, and the considerably reduced effects ranging from 70% to 75% on the PIOs with respect to the LIOs can be verified in our case. In addition, based on 26 consecutive days’ GPS observations from two international GNSS service (IGS) sites (COCO, DAEJ) during disturbed ionosphere period, the extracted PIOs and LIOs are respectively used as the input of single-layer ionospheric model to retrieve daily satellite IFBs station-by-station. The minor extracting errors underlying the PIOs in contrast to the LIOs can also be proven by reducing day-to-day scatter and improving between-receiver consistency in the retrieved satellite IFBs values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang Y X, Zeng A M. Adaptive filtering for deformation parameter estimation in consideration of geometrical measurements and geophysical models. Sci China Ser D-Earth Sci, 2009, 52: 1216–1222

    Article  Google Scholar 

  2. Yang Y X, Zeng A M, Wu F M. Horizontal crustal movement in China fitted by adaptive collocation with embedded Euler vector. Sci China Earth Sci, 2011, 54: 1822–1829

    Article  Google Scholar 

  3. Feng Y M, Li B F. Wide area real time kinematic decimetre positioning with multiple carrier GNSS signals. Sci China Earth Sci, 2010, 53: 731–740

    Article  Google Scholar 

  4. Yang Y X, Li J L, Xu J Y, et al. Contribution of the Compass satellite navigation system to global PNT users. Chin Sci Bull, 2011, 56: 2813–2819

    Article  Google Scholar 

  5. Hernández-Pajares M, Juan J M, Sanz J. New approaches in global ionospheric determination using ground GPS data. J Atmos Solar Terr Phys, 1999, 61: 1237–1247

    Article  Google Scholar 

  6. Mannucci A J, Wilson B D, Yuan D N, et al. A global mapping technique for GPS derived ionospheric total electron content measurements. Radio Sci, 1998, 33: 565–582

    Article  Google Scholar 

  7. Brunini C, Azpilicueta F. Accuracy assessment of the GPS-based slant total electron content. J Geod, 2009, 83: 773–785

    Article  Google Scholar 

  8. Brunini C, Azpilicueta F. GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions. J Geod, 2010, 84: 293–304

    Article  Google Scholar 

  9. Komjathy A, Sparks L, Wilson B D, et al. Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms, Radio Sci, 2005, 40: RS6006

    Article  Google Scholar 

  10. Wilson B D, Mannucci A J. Extracting ionospheric measurements from GPS in the presence of Anti-Spoofing. Proceedings of ION GPS, Salt Lake City, Utah, USA. 1994. 1599–1608

  11. Burrell A G, Bonito N A, Carrano C S. Total electron content processing from GPS observations to facilitate ionospheric modeling. GPS Solut, 2006, 13: 83–95

    Article  Google Scholar 

  12. Rideout W, Coster A. Automated GPS processing for global total electron content data. GPS Solut, 2006, 10: 219–228

    Article  Google Scholar 

  13. Ciraolo L, Azpilicueta F, Brunini C, et al. Calibration errors on experimental slant total electron content determined with GPS. J Geod, 2007, 81: 111–120

    Article  Google Scholar 

  14. Yuan Y B, Huo X L, Ou J K. Models and methods for precise determination of ionospheric delay using GPS. Prog Nat Sci, 2007, 17: 187–196

    Article  Google Scholar 

  15. Bishop G J, Klobuchar J A. Multipath effects on the determination of absolute ionospheric time delay from GPS signals. Radio Sci, 1985, 20: 388–396

    Article  Google Scholar 

  16. Coco D S, Coker C, Dahlke S R, et al. Variability of GPS satellite differential group delays biases. IEEE Trans Aerosp Electron Syst, 1991 27: 931–938

    Article  Google Scholar 

  17. Manucci A J, Iijima B A, Lindqwister U J, et al. GPS and ionosphere: URSI reviews of Radio Science, Jet Propulsion Laboratory, Pasadena, 1999

    Google Scholar 

  18. Hernández-Pajares M, Juan J M, Sanz J, et al. Improvig the real-time ionopsheric determination from GPS sites at very long distances over the equator. J Geophys Res, 2002, doi: 10.1029/2001JA009203

  19. Schaer S, Beutler G, Mervart L, et al. Global and regional ionosphere models using the GPS double difference phase observable. In: Gendt G, Dick G, eds. Proceedings of the IGS Workshop on Special Topics on New Directions, Potsdam, 1995. 77–92

  20. Wanninger L. Enhancing differential GPS using regional ionospheric error models. J Geod, 1995, 69: 283–291

    Google Scholar 

  21. Wilson B D, Mannucci A J. Instrumental Biases in Ionospheric Measurements derived from GPS data. Proceedings of ION GPS, Salt Lake City, Utah, USA, 1993

  22. Mitchell C N, Spencer P S J. A three-dimensional time-dependent algorithm for ionospheric imaging using GPS. Ann Geophys, 2003, 46: 687–696

    Google Scholar 

  23. Zumberge J F, Heflin M B, Jefferson D C, et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res, 1997, 102: 5005–5017

    Article  Google Scholar 

  24. Liu J N, Ye S R. GPS Precise point positioning using undifferenced phase observation (in Chinese). Geomat Inf Sci Wuhan Univ, 2002, 27: 234–240

    Google Scholar 

  25. Zhang X H, Liu J N, Forsberg R. Application of precise point positioning in airborne survey (in Chinese). Geomat Inf Sci Wuhan Univ, 2006, 31: 19–22, 46

    Google Scholar 

  26. Kouba J, Heroux P. GPS precise point positioning using IGS orbit products. GPS Solut, 2001, 5: 12–28

    Article  Google Scholar 

  27. Dow J, Neilan R, Rizos C. The international GNSS service in a changing landscape of global navigation satellite systems. J Geod, 2009, 83: 191–198

    Article  Google Scholar 

  28. Schmid R, Steigenberger P, Gendt G, et al. Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J Geod, 2007, 81: 781–798

    Article  Google Scholar 

  29. Sardon E, Zarraoa N. Estimation of total electron-content using GPS data: How stable are the differential satellite and receiver instrumental biases? Radio Sci, 1997, 32: 1899–1910

    Article  Google Scholar 

  30. Gaposchkin E M, Coster A J. GPS L1-L2 bias determination. Lincoln Laboratory Technical Report 971 (MIT), Massachusetts, 1993

  31. Zhang B C, Ou J K, Yuan Y B, et al. Yaw attitude of eclipsing GPS satellites and its impact on solutions from precise point positioning. Chin Sci Bull, 2010, 55: 3687–3693

    Article  Google Scholar 

  32. Camargo P O, Monico J F G, Ferreira L D D. Application of ionospheric corrections in the equatorial region for L1 GPS users. Earth Planets Space, 2000, 52: 1083–1089

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BaoCheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Ou, J., Yuan, Y. et al. Extraction of line-of-sight ionospheric observables from GPS data using precise point positioning. Sci. China Earth Sci. 55, 1919–1928 (2012). https://doi.org/10.1007/s11430-012-4454-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-012-4454-8

Keywords

Navigation