Skip to main content
Log in

Highly fractionated granites: Recognition and research

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Granite is one of the most important components of the continental crust on our Earth; it thus has been an enduring studied subject in geology. According to present knowledge, granite shows a great deal of heterogeneity in terms of its texture, structure, mineral species and geochemical compositions at different scales from small dike to large batholith. However, the reasons for these variations are not well understood although numerous interpretations have been proposed. The key point of this debate is whether granitic magma can be effectively differentiated through fractional crystallization, and, if so, what kind of crystallization occurred during the magmatic evolution. Although granitic magma has high viscosity because of its elevated SiO2 content, we agree that fractional crystallization is effectively processed during its evolution based on the evidence from field investigation, mineral species and its chemical variations, and geochemical compositions. These data indicate that crystal settling by gravitation is not the only mechanism dominating granitic differentiation. On the contrary, flow segregation or dynamic sorting may be more important. Accordingly, granite can be divided into unfractionated, fractionated (including weakly fractionated and highly fractionated) and cumulated types, according to the differentiation degree. Highly fractionated granitic magmas are generally high in primary temperature or high with various volatiles during the later stage, which make the fractional crystallization much easier than the common granitic melts. In addition, effective magmatic differentiation can be also expected when the magma emplaced along a large scale of extensional structure. Highly fractionated granitic magma is easily contaminated by country rocks due to its relatively prolonged crystallization time. Thus, granites do not always reflect the characteristics of the source areas and the physical and chemical conditions of the primary magma. We proposed that highly fractionated granites are an important sign indicating compositional maturity of the continental crust, and they are also closely related to the rare-elemental (metal) mineralization of W, Sn, Nb, Ta, Li, Be, Rb, Cs, REEs, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott Jr R N. 1989. Internal structures in part of the South Mountain batholith, Nova Scotia, Canada. Geol Soc A. Bull, 101: 1493–1506

    Article  Google Scholar 

  • Ayres M, Harris N. 1997. REE fractionation and Nd-isotope disequilibrium during crustal anatexis: Constraints from Himalayan leucogranites. Chem Geol, 139: 249–269

    Article  Google Scholar 

  • Bachmann O, Bergantz G W. 2004. On the origin of crystal-poor rhyolites: Extracted from batholithic crystal mushes. J Petrol, 45: 1565–1582

    Article  Google Scholar 

  • Bachmann O, Bergantz G W. 2008. The magma resevoirs that feed supereruptions. Element, 4: 14–21

    Article  Google Scholar 

  • Bachmann O, Miller C F, de Silva S L. 2007. The volcanic-plutonic connection as a stage for understanding crustal magmatism. J Volcanol Geotherm Res, 167: 1–23

    Article  Google Scholar 

  • Bachmann O, Deering C D, Lipman P W, Plummer C. 2014. Building zoned ignimbrites by recycling silicic cumulates: Insight from the 1000 km3 Carpenter Ridge Tuff, CO. Contrib Mineral Petrol, 167: 1025

    Article  Google Scholar 

  • Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R, Vigneresse J L. 2016. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology, 44: 231–234

    Article  Google Scholar 

  • Bao Z W, Zhao Z H. 2003. Geochemistry and tectonic setting of the Fogang aluminous A-type granite, Guangdong province, China: A preliminary study (in Chinese). Geol Geochem, 30: 52–61

    Google Scholar 

  • Barbarin B. 1996. Genesis of the two main types of peraluminous granitoids. Geology, 24: 295–298

    Article  Google Scholar 

  • Barbey P, Gasquet D, Pin C, Bourgeix A L. 2008. Igneous banding, schlieren and mafic enclaves in calc-alkaline granites: The Budduso pluton (Sardinia). Lithos, 104: 147–163

    Article  Google Scholar 

  • Barbey P. 2009. Layering and schlieren in granitoids: A record of interactions between magma emplacement, crystallization and deformation in growing plutons. Geol Belgica, 12: 109–133

    Google Scholar 

  • Barnes E M, Weis D, Groat L A. 2012. Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada. Lithos, 132-133: 21–36

    Article  Google Scholar 

  • Barrière M. 1981. On curved laminae, graded layers, convection currents and dynamic crystal sorting in the Ploumanac′h (brittany) subalkaline granite. Contrib Mineral Petrol, 77: 214–224

    Article  Google Scholar 

  • Bateman P C, Chappell B W. 1979. Crystallization, fractionation, and solidification of the Tuolumne intrusive series, Yosemite National Park, California. Geol Soc A. Bull, 90: 465–482

    Article  Google Scholar 

  • Bau M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Mineral Petrol, 123: 323–333

    Article  Google Scholar 

  • Bea F, Fershtater G B, Montero P, Smirnov V N, Molina J F. 2005. Deformation-driven differentiation of granitic magma: The Stepninsk pluton of the Uralides, Russia. Lithos, 81: 209–233

    Article  Google Scholar 

  • Bea F, Montero P, Gonzalez-Lodeiro F, Talavera C. 2007. Zircon inheritance reveals exceptionally fast crustal magma generation processes in Central Iberia during the Cambro-Ordovician. J Petrol, 48: 2327–2339

    Article  Google Scholar 

  • Becker G F. 1897. Fractional crystallization of rocks. Am J Sci, 4: 257–261

    Article  Google Scholar 

  • Bhattacharji S, Smith C H. 1964. Flowage differentiation. Science, 145: 150–153

    Article  Google Scholar 

  • Blundy J, Cashman K. 2001. Ascent-driven crystallisation of dacite magmas at Mount S. Helens, 1980–1986. Contrib Mineral Petrol, 140: 631–650

    Article  Google Scholar 

  • Bowen N L. 1912. The order of crystallization in igneous rocks. J Geol, 20: 457–468

    Article  Google Scholar 

  • Bowen N L. 1928. The Evolution of the Igneous Rocks. Princeton: Princeton University Press

    Google Scholar 

  • Breiter K, Förster H J, Škoda R. 2006. Extreme P-, Bi-, Nb-, Sc-, U-and F-rich zircon from fractionated perphosphorous granites: The peraluminous Podlesí granite system, Czech Republic. Lithos, 88: 15–34

    Article  Google Scholar 

  • Breiter K, Gardenová N, Kanický V, Vaculovič T. 2013. Gallium and germanium geochemistry during magmatic fractionation and post-magmatic alteration in different types of granitoids: A case study from the Bohemian Massif (Czech Republic). Geol Carpath, 64: 171–180

    Article  Google Scholar 

  • Breiter K, Lamarão C N, Borges R M K. Dall’Agnol R. 2014. Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites. Lithos, 192-195: 208–225

    Article  Google Scholar 

  • Brigham R H. 1983. A fluid dynamic appraisal of a model for the origin of comb layering and orbicular structure. J Geol, 91: 720–724

    Article  Google Scholar 

  • Castro A. 2013. Tonalite-granodiorite suites as cotectic systems: A review of experimental studies with applications to granitoid petrogenesis. Earth-Sci Rev, 124: 68–95

    Article  Google Scholar 

  • Cawthorn R G, Strong D F, Brown P A. 1976. Origin of corundum-normative intrusive and extrusive magmas. Nature, 259: 102–104

    Article  Google Scholar 

  • Černý P, Meintzer R E. Anderson A J. 1985. Extreme fractionation in rareelement granitic pegmatites: Selected examples of data and mechanisms. Can Mineral, 23: 381–421

    Google Scholar 

  • Černý P, Teertstra D K. Chapman R, Selway J B. Hawthorne F C. Ferreira K, Chackowsky L E. Wang X J. Meintzer R E. 2012. Extreme fractionation and deformation of the leucogranite-pegmatite suite at Red Cross Lake, Manitoba, Canada. IV. Mineralogy. Can Mineral, 50: 1839–1875

    Article  Google Scholar 

  • Chappell B W. 1999. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites. Lithos, 46: 535–551

    Article  Google Scholar 

  • Chappell B W, White A J R. Wyborn D. 1987. The importance of residual source material (restite) in granite petrogenesis. J Petrol, 28: 1111–1138

    Article  Google Scholar 

  • Chappell B W, White A J R. 1992. I-and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinb-Earth Sci, 83: 1–26

    Article  Google Scholar 

  • Chappell B W, Wyborn D. 2004. Cumulate and cumulative granites and associated rocks. Resource Geol, 54: 227–240

    Article  Google Scholar 

  • Chappell B W, White A J R. Williams I S, Wyborn D. 2004. Low-and high-temperature granites. Trans R Soc Edinb-Earth Sci, 95: 125–140

    Article  Google Scholar 

  • Chappell B W, Bryant C J, Wyborn D. 2012. Peraluminous I-type granites. Lithos, 153: 142–153

    Article  Google Scholar 

  • Che X D, Wu F Y, Wang R C, Gerdes A, Ji W Q, Zhao Z H, Yang J H, Zhu Z Y. 2015. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS. Ore Geol Rev, 65: 979–989

    Article  Google Scholar 

  • Chen B, Ma X, Wang Z. 2014. Origin of the fluorine-rich highly differentiated granites from the Qianlishan composite plutons (South China) and implications for polymetallic mineralization. J Asian Earth Sci, 93: 301–314

    Article  Google Scholar 

  • Chen J Y, Yang J H. 2015. Petrogenesis of the Fogang highly fractionated I-type granitoids: Constraints from Nb, Ta, Z. and H. (in Chinese). Acta Petrol Sin, 31: 846–854

    Google Scholar 

  • Chen X M, Wang R C, Liu C S, Hu H, Zhang W L, Gao J F. 2002. Isotopic dating and genesis for Fogang biotite granites of Conghua area, Guangdong Province (in Chinese with English abstract). Geol J China Univ, 8: 293–307

    Article  Google Scholar 

  • Chudík P, Uher P, Kohút M, Bačík P. 2008. Accessory columbite to tantalite, tapiolite and zircon: Products of extreme fractionation in highly peraluminous pegmatitic granite from the Považský Inovec Mountains, Western Carpathians, Slovakia. J Geosci, 53: 323–334

    Google Scholar 

  • Claiborne L L, Miller C F, Walker B A, Wooden J L, Mazdab F K, Bea F. 2006. Tracking magmatic processes through Zr/Hf ratios in rocks and H. and T. zoning in zircons: A. example from the Spirit Mountain batholith, Nevada. Mineral Mag, 70: 517–543

    Article  Google Scholar 

  • Clarke D B. 1981. The mineralogy of peraluminous granites: A review. Can Mineral, 19: 3–17

    Google Scholar 

  • Clarke D B. 2007. Assimilation of enocrystals in granitic magmas: Principles, processes, proxies, and problems. Can Mineral, 45: 5–30

    Article  Google Scholar 

  • Clarke D B, Clarke G K C. 1998. Layered granodiorites at Chebucto Head, South Mountain batholith, Nova Scotia. J Structural Geol, 20: 1305–1324

    Article  Google Scholar 

  • Claxton C W. 1968. Mineral layering in the Galway Granite, Connemara, Eire. Geol Mag, 105: 149–159

    Article  Google Scholar 

  • Clemens J D, Petford N. 1999. Granitic melt viscosity and silicic magma dynamics in contrasting tectonic settings. J Geol Soc, 156: 1057–1060

    Article  Google Scholar 

  • Clemens J D, Stevens G. 2012. What controls chemical variation in granitic magmas? Lithos, 134-135: 317–329

    Article  Google Scholar 

  • Clemens J D. 2003. S-type granitic magmas—Petrogenetic issues, models and evidence. Earth-Sci Rev, 61: 1–18

    Article  Google Scholar 

  • Coleman D S, Gray W, Glazner A F. 2004. Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology, 32: 433

    Article  Google Scholar 

  • Collins W J, Wiebe R A, Healy B, Richards S W. 2006. Replenishment, crystal accumulation and floor aggradation in the megacrystic Kamaruka Suite, Australia. J Petrol, 47: 2073–2104

    Article  Google Scholar 

  • Cuney M, Marignac C, Weisbrod A. 1992. The Beauvoir topaz-lepidolite albite granite (Massif Central, France); the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Econ Geol, 87: 1766–1794

    Article  Google Scholar 

  • Deering C D, Bachmann O. 2010. Trace element indicators of crystal accumulation in silicic igneous rocks. Earth Planet Sci Lett, 297: 324–331

    Article  Google Scholar 

  • Deering C D, Keller B, Schoene B, Bachmann O, Beane R, Ovtcharova M. 2016. Zircon record of the plutonic-volcanic connection and protracted rhyolite melt evolution. Geology, 44: 267–270

    Article  Google Scholar 

  • Deveaud S, Millot R, Villaros A. 2015. The genesis of LCT-type granitic pegmatites, as illustrated by lithium isotopes in micas. Chem Geol, 411: 97–111

    Article  Google Scholar 

  • Dill H G. 2015. Pegmatites and aplites: Their genetic and applied ore geology. Ore Geol Rev, 69: 417–561

    Article  Google Scholar 

  • Dingwell D B, Knoche R, Webb S L, Pichavant M. 1992. The effects of B2O3 on the viscosity of haplogranitic liquids. Am Miner, 77: 457–461

    Google Scholar 

  • Dingwell D B, Knoche R, Webb S L. 1993. The effects of P2O5 on the viscosity of haplogranitic liquids. Eur J Mineral, 5: 133–140

    Article  Google Scholar 

  • Dostal J, Chatterjee A K. 2000. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chem Geol, 163: 207–218

    Article  Google Scholar 

  • Dostal J, Kontak D J, Gerel O, Gregory Shellnutt J, Fayek M. 2015. Cretaceous ongonites (topaz-bearing albite-rich microleucogranites) from Ongon Khairkhan, Central Mongolia: Products of extreme magmatic fractionation and pervasive metasomatic fluid: Rock interaction. Lithos, 236-237: 173–189

    Article  Google Scholar 

  • Foden J, Sossi P A, Wawryk C M. 2015. F. isotopes and the contrasting petrogenesis of A-, I-and S-type granite. Lithos, 212-215: 32–44

    Article  Google Scholar 

  • Frey F A, Chappell B W, Roy S D. 1978. Fractionation of rare-earth elements in the Tuolumne Intrusive Series, Sierra Nevada batholith, California. Geology, 6: 239–242

    Article  Google Scholar 

  • Gao J F, Ling H F, Shen W Z, Lu J J, Zhang M, Huang G L, Tan Z Z. 2005. Geochemistry and petrogenesis of the Lianyang granite composite, west Guangdong Province (in Chinese). Acta Petrol Sin, 21: 1645–1656

    Google Scholar 

  • Gao P, Zheng Y F, Zhao Z F. 2016a. Experimental melts from crustal rocks: A lithochemical constraint on granite petrogenesis. Lithos, 266-267: 133–157

    Article  Google Scholar 

  • Gao P, Zheng Y F, Zhao Z F. 2016b. Distinction between S-type and peraluminous I-type granites: Zircon versus whole-rock geochemistry. Lithos, 258-259: 77–91

    Article  Google Scholar 

  • García-Moreno O, Corretge L G, Castro A. 2007. Processes of assimilation in the genesis of cordierite leucomonzogranites from the Iberian Massif: A short review. Can Mineral, 45: 71–85

    Article  Google Scholar 

  • Gawęda A, Szopa K. 2011. The origin of magmatic layering in the High Tatra granite, Central Western Carpathians-implications for the formation of granitoid plutons. Earth Environ Sci Trans R Soc Edinb, 102: 129–144

    Google Scholar 

  • Gelman S E, Deering C D, Bachmann O, Huber C, Gutiérrez F J. 2014. Identifying the crystal graveyards remaining after large silicic eruptions. Earth Planet Sci Lett, 403: 299–306

    Article  Google Scholar 

  • Gilbert G K. 1906. Gravitational assemblage in granite. Geol Soc A. Bull, 17: 321–328

    Article  Google Scholar 

  • Glazner A F, Bartley J M, Coleman D S, Gray W, Taylor R Z. 2004. Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today, 14: 4–11

    Article  Google Scholar 

  • Glazner A F, Bartley J M. 2006. Is stoping a volumetrically significant pluton emplacement process? Geol Soc A. Bull, 118: 1185–1195

    Article  Google Scholar 

  • Glazner A F. 2014. Magmatic life at low Reynolds number. Geology, 42: 935–938

    Article  Google Scholar 

  • Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem Geol, 120: 347–359

    Article  Google Scholar 

  • Gu L, Zhang Z, Wu C, Gou X, Liao J, Yang H. 2011. A topaz-and amazonite-bearing leucogranite pluton in eastern Xinjiang, N. China and its zoning. J Asian Earth Sci, 42: 885–902

    Article  Google Scholar 

  • Guo C L, Wang R C, Yuan S D, Wu S H, Yin B. 2015. Geochronological and geochemical constraints on the petrogenesis and geodynamic setting of the Qianlishan granitic pluton, Southeast China. Mineral Petrol, 109: 253–282

    Article  Google Scholar 

  • Guo C L, Wu F Y, Yang J H, Lin J Q, Sun D Y. 2004. The extensional setting of the Early Cretaceous magmatism in Eastern China-example from the Yinmawanshan pluton in southern Liaodong Peninsula (in Chinese). Acta Petrol Sin, 20: 1193–1204

    Google Scholar 

  • Halliday A N, Davidson J P, Hildreth W, Holden P. 1991. Modelling the petrogenesis of high Rb/Sr silicic magmas. Chem Geol, 92: 107–114

    Article  Google Scholar 

  • Harker A. 1909. The Natural History of Igneous Rocks. London: Methuen

    Google Scholar 

  • He Z, Xu X, Yu Y, Zou H. 2009. Origin of the Late Cretaceous syenite from Yandangshan, S. China, constrained by zircon U-Pb and H. isotopes and geochemical data. Int Geol Revs, 51: 556–582

    Article  Google Scholar 

  • Hildreth W, Moorbath S. 1988. Crustal contributions to arc magmatism in the Andes of Central Chile. Contr Mineral Petrol, 98: 455–489

    Article  Google Scholar 

  • Hildreth W. 2004. Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: Several contiguous but discrete systems. J Volcanol Geotherm Res, 136: 169–198

    Article  Google Scholar 

  • Hinchey A M, Carr S D. 2006. The S-type Ladybird leucogranite suite of southeastern British Columbia: Geochemical and isotopic evidence for a genetic link with migmatite formation in the North American basement gneisses of the Monashee complex. Lithos, 90: 223–248

    Article  Google Scholar 

  • Hollister L S, Crawford M L. 1986. Melt-enhanced deformation: A major tectonic process. Geology, 14: 558–561

    Article  Google Scholar 

  • Hong W, Xu X, Zou H. 2013. Petrogenesis of coexisting high-silica aluminous and peralkaline rhyolites from Yunshan (Yongtai), southeastern China. J Asian Earth Sci, 74: 316–329

    Article  Google Scholar 

  • Huang X L, Wang R C, Chen X M, Hu H, Liu C S. 2002. Vertical variations in the mineralogy of the Yichun topaz-lepidolite granite, Jiangxi Province, southern China. Can Mineral, 40: 1047–1068

    Article  Google Scholar 

  • Huber C, Bachmann O, Dufek J. 2012. Crystal-poor versus crystal-rich ignimbrites: A competition between stirring and reactivation. Geology, 40: 115–118

    Article  Google Scholar 

  • Irber W. 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta, 63: 489–508

    Article  Google Scholar 

  • Jahn B, Wu F, Capdevila R, Martineau F, Zhao Z, Wang Y. 2001. Highly evolved juvenile granites with tetrad REE patterns: The Woduhe and Baerzhe granites from the Great Xing’an Mountains in N. China. Lithos, 59: 171–198

    Article  Google Scholar 

  • Johannes W, Holtz F. 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Berlin: Springer-Verlag. 335

    Book  Google Scholar 

  • Keller C B, Schoene B, Barboni M, Samperton K M, Husson J M. 2015. Volcanic-plutonic parity and the differentiation of the continental crust. Nature, 523: 301–307

    Article  Google Scholar 

  • King P L, Chappell B W, Allen C M, White A J R. 2001. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australian J Earth Sci, 48: 501–514

    Article  Google Scholar 

  • Kovalenko V I, Kovalenko N I. 1984. Problems of the origin, ore-bearing and evolution of rare-metal granitoids. Phys Earth Planet Inter, 35: 51–62

    Article  Google Scholar 

  • Lackey J S, Valley J W, Hinke H J. 2006. Deciphering the source and contamination history of peraluminous magmas using δ 18O of accessory minerals: Examples from garnet-bearing plutons of the Sierra Nevada batholith. Contrib Mineral Petrol, 151: 20–44

    Article  Google Scholar 

  • Lee C T A. Morton D M. 2015. High silica granites: Terminal porosity and crystal settling in shallow magma chambers. Earth Planet Sci Lett, 409: 23–31

    Article  Google Scholar 

  • Li X H, Li W X, Li Z X. 2007a. On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range, South China. Chin Sci Bull, 52: 1873–1885

    Article  Google Scholar 

  • Li X H, Li Z X, Li W X, Liu Y, Yuan C, Wei G J, Qi C S. 2007b. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, S. China: A major igneous event in response to foundering of a subducted flat-slab? Lithos, 96: 186–205

    Article  Google Scholar 

  • Li J, Huang X L. 2013. Mechanism of Ta-Nb enrichment and magmatic evolution in the Yashan granites, Jiangxi Province, south China (in Chinese). Acta Petrol Sin, 29: 4311–4322

    Google Scholar 

  • Li J, Huang X L, He P L, Li W X, Yu Y, Chen L. 2015. In situ analyses of micas in the Yashan granite, South China: Constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites. Ore Geol Rev, 65: 793–810

    Article  Google Scholar 

  • Liang W, Yang Z S, Zheng Y C. 2015. The Zhaxikang Pb-ZnP deposit: Ar-Ar age of sericite and its metallogenic significance (in Chinese). Acta Geol Sin, 89: 560–568

    Google Scholar 

  • Linnen R L, Keppler H. 2002. Melt composition control of Zr/Hf fractionation in magmatic processes. Geochim Cosmochim Acta, 66: 3293–3301

    Article  Google Scholar 

  • Linnen R L, Cuney M. 2004. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In: Linnen R L. Samson I M. eds. Eare-Element Geochemistry and Mineral Deposits. GAC Short Course Notes, 17: 45–68

    Google Scholar 

  • Lipman P W, Bachmann O. 2014. Ignimbrites to batholiths: Integrating perspectives from geological, geophysical, and geochronological data. Geosphere, 11: 705–743

    Article  Google Scholar 

  • Liu S A, Teng F Z, He Y, Ke S, Li S. 2010. Investigation of magnesium isotope fractionation during granite differentiation: Implication for M. isotopic composition of the continental crust. Earth Planet Sci Lett, 297: 646–654

    Article  Google Scholar 

  • Liu Z C, Wu F Y, Ji W Q, Wang J G, Liu C Z. 2014. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model. Lithos, 208-209: 118–136

    Article  Google Scholar 

  • Liu Z C, Wu F Y, Ding L, Liu X C, Wang J G, Ji W Q. 2016. Highly fractionated late Eocene (~35 Ma) leucogranite in the Xiaru dome, Tethyan Himalaya, South Tibet. Lithos, 240: 337–354

    Article  Google Scholar 

  • London D. 2008. Pegmatites. Can Mineral Special Pubs, 10: 347

    Google Scholar 

  • London D, Evensen J M. 2002. Beryllium in silicic magmas and the origin of Beryl-bearing pegmatites. In: Grew E S. ed. Beryllium: Mineralogy, Petrology, and Geochemistry. Rev Mineral Geochem, 50: 445–486

    Google Scholar 

  • Lou F S, Shen W Z, Wang D Z, Shu L S, Wu F J, Zhang F R, Yu J H. 2005. Zircon U-Pb isotopic chronology of theWugongshan dome compound granite in Jiangxi Province (in Chinese with English abstract). Acta Geol Sin, 79: 636–644

    Google Scholar 

  • Marignac C, Cuney M. 1999. Ore deposits of the French Massif Central: Insight into the metallogenesis of the Variscan collision belt. Miner Depos, 34: 472–504

    Article  Google Scholar 

  • Maas R, Nicholls I A, Legg C. 1997. Igneous and metamorphic enclaves in the S-type Deddick granodiorite, Lachlan Fold Belt, S. Australia: Petrographic, geochemical and Nd-Sr isotopic evidence for crustal melting and magma mixing. J Petrol, 38: 815–841

    Article  Google Scholar 

  • Manning D A C. 1981. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb. Contrib Mineral Petrol, 76: 206–215

    Article  Google Scholar 

  • Masuda A, Akagi T. 1989. Lanthanide tetrad effect observ ed in leucogranites from China. Geochem J, 23: 245–253

    Article  Google Scholar 

  • McBirney A R, Noyes R M. 1979. Crystallization and layering of the Skaergaard intrusion. J Petrol, 20: 487–554

    Article  Google Scholar 

  • McCarthy T S, Groves D I. 1979. The blue tier batholith, Northeastern Tasmania. Contrib Mineral Petrol, 71: 193–209

    Article  Google Scholar 

  • McPhie J, Kamenetsky V, Allen S, Ehrig K, Agangi A, Bath A. 2011. The fluorine link between a supergiant ore deposit and a silicic large igneous province. Geology, 39: 1003–1006

    Article  Google Scholar 

  • Merino E, Villaseca C, Orejana D, Jeffries T. 2013. Gahnite, chrysoberyl and beryl co-occurrence as accessory minerals in a highly evolved peraluminous pluton: The Belvís de Monroy leucogranite (Cáceres, Spain). Lithos, 179: 137–156

    Article  Google Scholar 

  • Miller C F. 1985. Are strongly peraluminous magmas derived from pelitic sedimentary sources? J Geol, 93: 673–689

    Article  Google Scholar 

  • Miller C F, Miller J S. 2002. Contrasting stratified plutons exposed in tilt blocks, Eldorado Mountains, Colorado River Rift, NV, USA. Lithos, 61: 209–224

    Article  Google Scholar 

  • Miller C F, Mittlefehldt D W. 1982. Depletion of light rare-earth elements in felsic magmas. Geology, 10: 129–133

    Article  Google Scholar 

  • Miller C F, Mittlefehldt D W. 1984. Extreme fractionation in felsic magma chambers: A product of liquid-state diffusion or fractional crystallization? Earth Planet Sci Lett, 68: 151–158

    Article  Google Scholar 

  • Miller J S, Matzel J E P. Miller C F, Burgess S D, Miller R B. 2007. Zircon growth and recycling during the assembly of large, composite arc plutons. J Volcanol Geotherm Res, 167: 282–299

    Article  Google Scholar 

  • Mills R D, Glazner A F, Coleman D S. 2009. Scale of pluton/wall rock interaction near May Lake, Yosemite National Park, CA, USA. Contrib Mineral Petrol, 158: 263–281

    Article  Google Scholar 

  • Monecke T, Kempe U, Trinkler M, Thomas R, Dulski P, Wagner T. 2011. Unusual rare earth element fractionation in a tin-bearing magmatic-hydrothermal system. Geology, 39: 295–298

    Article  Google Scholar 

  • Moore J G, Lockwood J P. 1973. Origin of comb layering and orbicular structure, Sierra Nevada batholith, California. Geol Soc A. Bull, 84: 1–20

    Article  Google Scholar 

  • Ng S W P. Chung S L, Robb L J, Searle M P, Ghani A A, Whitehouse M J, Oliver G J, Sone M, Gardiner N J, Roselee M H. 2015. Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt: Part 1. Geochemical and Sr-Nd isotopic characteristics. Geol Soc A. Bull, 127: 1209–1237

    Article  Google Scholar 

  • Paterson S R. 2009, Magmatic tubes, troughs, pipes, and diapirs: Late-stage convective instabilities resulting in complex permeable networks in crystal-rich magmas of the Tuolumne Batholith, Sierra Nevada, California. Geosphere, 5: 496–527

    Article  Google Scholar 

  • Paterson S R, Žák J. Janoušek V. 2008. Growth of complex sheeted zones during recycling of older magmatic units into younger: Sawmill Canyon area, Tuolumne batholith, Sierra Nevada, California. J Volcanol Geotherm Res, 177: 457–484

    Article  Google Scholar 

  • Patiño Douce A E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol Soc Lond Spec Publ, 168: 55–75

    Article  Google Scholar 

  • Peng J T, Hu R Z, Burnard P G. 2003. Samarium–neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit (Hunan, China): The potential of calcite as a geochronometer. Chem Geol, 200: 129–136

    Article  Google Scholar 

  • Pérez-Soba C, Villaseca C. 2010. Petrogenesis of highly fractionated I-type peraluminous granites: L. Pedriza pluton (Spanish Central System). Geol Acta, 8: 131–149

    Google Scholar 

  • Petford N, Cruden A R, McCaffrey K J W. Vigneresse J L. 2000. Granite magma formation, transport and emplacement in the Earth’s crust.. Nature, 408: 669–673

    Article  Google Scholar 

  • Petford N. 2003. Rheology of granitic magmas during ascent and emplacement. Annu Rev Earth Planet Sci, 31: 399–427

    Article  Google Scholar 

  • Pitcher W S. 1997. The Nature and Origin of Granite. 2nd ed. Boca Raton: Chapman & Hall. 387

    Book  Google Scholar 

  • Poitrasson F, Freydier R. 2005. Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS. Chem Geol, 222: 132–147

    Article  Google Scholar 

  • Pons J, Barbey P, Nachit H, Burg J P. 2006. Development of igneous layering during growth of pluton: The Tarçouate Laccolith (Morocco). Tectonophysics, 413: 271–286

    Article  Google Scholar 

  • Pupier E, Barbey P, Toplis M J, Bussy F. 2008. Igneous layering, fractional crystallization and growth of granitic plutons: The Dolbel batholith in S. Niger. J Petrol, 49: 1043–1068

    Article  Google Scholar 

  • Raimbault L, Cuney M, Azencott C, Duthou J L, Joron J L. 1995. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central. Econ Geol, 90: 548–576

    Article  Google Scholar 

  • Read H H. 1948. Granites and granites. Geol Soc A. Mem, 28: 1–19

    Google Scholar 

  • Read H H. 1957. The Granites Controversy: Geological Addresses Illustrat-ing the Evolution of a Disputant. London: Thomas Murby. 430

    Google Scholar 

  • Reid Jr J B. Murray D P, Hermes O D, Steig E J. 1993. Fractional crystallization in granites of the Sierra Nevada: How important is it? Geology, 21: 587

    Article  Google Scholar 

  • René M. 2014. Composition of coexisting zircon and xenotime in rare-metal granites from the Krušné Hory/Erzgebirge Mts. (Saxothuringian Zone, Bohemian Massif). Mineral Petrol, 108: 551–569

    Article  Google Scholar 

  • Rottura A, Caggianelli A, Campana R, Del Moro A. 1993. Petrogenesis of Hercynian peraluminous granites from the Calabrian arc, Italy. Eur J Mineral, 5: 737–754

    Article  Google Scholar 

  • Rudnick R L. 1995. Making continental crust. Nature, 378: 571–578

    Article  Google Scholar 

  • Rudnick R L, Gao S. 2003. The composition of the continental crust. In: Rudnick R L. ed. The Crust. Treatise on Geochemistry. Oxford: Elsevier. 64

    Google Scholar 

  • Russell J K. 2014. Sticky issues arising from high-viscosity magma: Settling arguments on magmatic structures. Geology, 42: 1023–1024

    Article  Google Scholar 

  • Scaillet B, Holtz F, Pichavant M, Schmidt M. 1996. Viscosity of Himalayan leucogranites: Implications for mechanisms of granitic magma ascent. J Geophys Res, 101: 27691–27699

    Article  Google Scholar 

  • Scaillet B, Holtz F, Pichavamt M. 1998. Phase equibrium constraints on the viscovity of silicic magmas-1. volcanic-plutonic comparison. J Geophy Res, 103: 27257–27266

    Article  Google Scholar 

  • Simakin A G, Bindeman I N. 2012. Remelting in caldera and rift environments and the genesis of hot, “recycled” rhyolites. Earth Planet Sci Lett, 337-338: 224–235

    Article  Google Scholar 

  • Smillie R W, Turnbull R E. 2014. Field and petrographical insight into the formation of orbicular granitoids from the Bonney Pluton, southern Victoria Land, Antarctica. Geol Mag, 151: 534–549

    Article  Google Scholar 

  • Smith T E. 1975. Layered granitic rocks at Chebucto Head, Halifax County, Nova Scotia. Can J Earth Sci, 12: 456–463

    Article  Google Scholar 

  • Solgadi F, Sawyer E W. 2008. Formation of igneous layering in granodiorite by gravity flow: A field, microstructure and geochemical study of the Tuolumne intrusive suite at Sawmill canyon, California. J Petrol, 49: 2009–2042

    Article  Google Scholar 

  • Sparks R S J. Huppert H E, Turner J S. 1984. The fluid dynamics of evolving magma chambers. Philos Trans R Soc A-Math Phys Eng Sci, 310: 511–534

    Article  Google Scholar 

  • Stephenson P J. 1990. Layering in felsic granites in the main East pluton, Hinchinbrook Island, North Queensland, Australia. Geol J, 25: 325–336

    Article  Google Scholar 

  • Sun T, Zhou X M, Chen P R, Li H M, Zhou H Y, Wang Z C, Shen W Z. 2005. Strongly peraluminous granites of Mesozoic in Eastern Nanling Range, southern China: Petrogenesis and implications for tectonics. Sci China Ser D-Earth Sci, 48: 165–174

    Article  Google Scholar 

  • Sylvester P J. 1998. Post-collisional strongly peraluminous granites. Lithos, 45: 29–44

    Article  Google Scholar 

  • Tartèse R, Boulvais P. 2010. Differentiation of peraluminous leucogranites “en route” to the surface. Lithos, 114: 353–368

    Article  Google Scholar 

  • Taylor Jr H P. 1980. The effects of assimilation of country rocks by magmas on 18O/16O and 87Sr/86Sr systematics in igneous rocks. Earth Planet Sci Lett, 47: 243–254

    Article  Google Scholar 

  • Teng F Z, McDonough W F, Rudnick R L, Walker R J, Sirbescu M L C. 2006. Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota. Am Miner, 91: 1488–1498

    Article  Google Scholar 

  • Tuttle O F, Bowen N L. 1958. Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol Soc A. Mem, 74: 1–153

    Google Scholar 

  • Vanderhaeghe O. 1999. Pervasive melt migration from migmatites to leucogranite in the Shuswap metamorphic core complex, Canada: Control of regional deformation. Tectonophysics, 312: 35–55

    Article  Google Scholar 

  • Vernon R H. 1985. Possible role of superheated magma in the formation of orbicular granitoids. Geology, 13: 843–845

    Article  Google Scholar 

  • Vernon R H. 2007. Problems in identifying restite in S-type granites of southeastern Australia, with speculations on sources of magma and enclaves. Can Mineral, 45: 147–178

    Article  Google Scholar 

  • Vernon R H, Paterson S R. 2006. Mesoscopic structures resulting from crystal accumulation and melt movement in granites. Trans R Soc Edinb-Earth Sci, 97: 369–381

    Article  Google Scholar 

  • Vernon R H, Collins W J. 2011. Structural criteria for identifying granitic cumulates. J Geol, 119: 127–142

    Article  Google Scholar 

  • Wager L R, Brown G M. 1968. Layered Igneous Rocks. San Francisco: WH Freeman. 587

    Google Scholar 

  • Waight T E, Maas R, Nicholls I A. 2001. Geochemical investigations of microgranitoid enclaves in the S-type Cowra Granodiorite, Lachlan Fold Belt, S. Australia. Lithos, 56: 165–186

    Article  Google Scholar 

  • Wang D Z, Zhou J C, Qiu J S, Fan H H. 2000. Characteristics and petrogenesis of Late Mesozoic granitic volcanic-intrusive complexes in southeastern China (in Chinese). Geol J China Univ, 6: 487–498

    Google Scholar 

  • Wang T, Jahn B, Kovach V P, Tong Y, Wilde S A, Hong D, Li S, Salnikova E B. 2014. Mesozoic intraplate granitic magmatism in the Altai accretionary orogen, N. China: Implications for the orogenic architecture and crustal growth. Am J Sci, 314: 1–42

    Article  Google Scholar 

  • Wang X, Griffin W L, Chen J. 2010. Hf contents and Zr/Hf ratios in granitic zircons. Geochem J, 44: 65–72

    Article  Google Scholar 

  • Wang X, Chen J, Ren M. 2016. Hydrothermal zircon geochronology: Age constraint on Nanling Range tungsten mineralization (Southeast China). Ore Geol Rev, 74: 63–75

    Article  Google Scholar 

  • Wang Y. 2008. Some further discussions on the genetic type of the Early Yanshanian granitoids in the Nanling area, S. China (in Chinese). Geol Rev, 54: 162–174

    Google Scholar 

  • Wang Z Q, Chen B, Ma X H. 2014. Petrogenesis of the Late Mesozoic Guposhan composite plutons from the Nanling Range, South China: Implications for W-SN mineralization. Am J Sci, 314: 235–277

    Article  Google Scholar 

  • Wark D A, Hildreth W, Spear F S, Cherniak D J, Watson E B. 2007. Preeruption recharge of the Bishop magma system. Geology, 35: 235–238

    Article  Google Scholar 

  • Weinberg R F. 2006. Melt segregation structures in granitic plutons. Geology, 34: 305–308

    Article  Google Scholar 

  • Weinberg R F, Sial A N, Pessoa R R. 2001. Magma flow within the Tavares pluton, northeastern Brazil: Compositional and thermal convection. Geol Soc A. Bull, 113: 508–520

    Article  Google Scholar 

  • Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol, 95: 407–419

    Article  Google Scholar 

  • Wickham S M. 1987. The segregation and emplacement of granitic magmas. J Geol Soc, 144: 281–297

    Article  Google Scholar 

  • Wiebe R A, Collins W J. 1998. Depositional features and stratigraphic sections in granitic plutons: Implications for the emplacement and crystallization of granitic magma. J Struct Geol, 20: 1273–1289

    Article  Google Scholar 

  • Wiebe R A, Blair K D, Hawkins D P, Sabine C P. 2002. Mafic injections, in situ hybridization, and crystal accumulation in the Pyramid Peak granite, California. Geol Soc A. Bull, 114: 909–920

    Article  Google Scholar 

  • Wilson M. 1993. Magmatic differentiation. J Geol Soc, 150: 611–624

    Article  Google Scholar 

  • Wolff J A, Ellis B S, Ramos F C, Starkel W A, Boroughs S, Olin P H, Bachmann O. 2015. Remelting of cumulates as a process for producing chemical zoning in silicic tuffs: A comparison of cool, wet and hot, dry rhyolitic magma systems. Lithos, 236-237: 275–286

    Article  Google Scholar 

  • Wu F Y, Li X H, Yang J H, Zheng Y F. 2007. Discussions on the petrogenesis of granites (in Chinese with English abstract). Acta Petrol Sin, 23: 1217–1238

    Google Scholar 

  • Wu F Y, Liu Z C, Liu X C, Ji W Q. 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift (in Chinese). Acta Petrol Sin, 31: 1–36

    Google Scholar 

  • Wu F, Sun D, Jahn B, Wilde S. 2004. A Jurassic garnet-bearing granitic pluton from N. China showing tetrad REE patterns. J Asian Earth Sci, 23: 731–744

    Article  Google Scholar 

  • Wyborn D, Chappell B W, James M. 2001. Examples of convective fractionation in high-temperature granites from the Lachlan Fold Belt. Aust J Earth Sci, 48: 531–541

    Article  Google Scholar 

  • Yin L, Pollard P J, Hu Shouxi P J. Taylor R G. 1995. Geologic and geochemical characteristics of the Yichun Ta-Nb-Li deposit, Jiangxi Province, South China. Econ Geol, 90: 577–585

    Article  Google Scholar 

  • Yin R, Wang R C, Zhang A C, Hu H, Zhu J C, Rao C, Zhang H. 2013. Extreme fractionation from zircon to hafnon in the Koktokay No. 1 granitic pegmatite, Altai, northwestern China. Am Miner, 98: 1714–1724

    Article  Google Scholar 

  • Žák J, Paterson S R. 2005. Characteristics of internal contacts in the Tuolumne Batholith, central Sierra Nevada, California (USA): Implications for episodic emplacement and physical processes in a continental arc magma chamber. Geol Soc A. Bull, 117: 1242–1255

    Article  Google Scholar 

  • Zen E A. 1986. Aluminum enrichment in silicate melts by fractional crystallization: Some mineralogic and petrographic constraints. J Petrol, 27: 1095–1117

    Article  Google Scholar 

  • Zhang A C, Wang R C, Jiang S Y, Hu H, Zhang H. 2008. Chemical and textural features of tourmaline from the spodumene-subtype Koktokay no. 3 pegmatite, Altai, northwestern China: A record of magmatic to hydrothermal evolution. Can Mineral, 46: 41–58

    Article  Google Scholar 

  • Zhang Q, Pan G Q, Li C D, Jin W J, Jia X Q. 2007. Does fractional crystallization occur in granitic magma? Some questions on granite study (2) (in Chinese). Acta Petrol Sin, 23: 1239–1251

    Google Scholar 

  • Zhang Q. 2012. Could granitic magmas experience fractionation and evolution (in Chinese)? Acta Petrol Minerl, 31: 252–260

    Google Scholar 

  • Zhao Z H, Masuda A, Shabani M B. 1993. REE tetrad effects in rare-metal granites. Chin J Geochem, 12: 206–219

    Article  Google Scholar 

  • Zhu J C, Li R K, Li F C, Xiong X L, Zhou F Y, Huang X L. 2001. Topaz-albite granites and rare-metal mineralization in the Limu District, Guangxi Province, southeast China. Miner Depos, 36: 393–405

    Article  Google Scholar 

  • Zhu J C, Rao B, Xiong X L, Li F C, Zhang P H. 2002. Comparison and genetic interpretation of Li-F rich, rare-metal bearing granitic rocks (in Chinese). Geochimica, 31: 141–152

    Google Scholar 

  • Zhao Z H, Xiong X L, Han X D, Wang Y X, Wang Q, Bao Z W, Jahn B M. 2002. Controls on the REE tetrad effect in granites: Evidence from the Qianlishan and Baerzhe Granites, China. Geochem J, 36: 527–543

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to many scholars for thoughtful discussions during manuscript preparation. Four anonymous reviewers are thanked for their detailed and comprehensive reviews, which improve the quality of the paper significantly. This work was supported by the National Natural Science Foundation of China (Grant No. 41130313) and by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB03010200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FuYuan Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Liu, X., Ji, W. et al. Highly fractionated granites: Recognition and research. Sci. China Earth Sci. 60, 1201–1219 (2017). https://doi.org/10.1007/s11430-016-5139-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-5139-1

Keywords

Navigation