Skip to main content
Log in

Growth of continental crust in intra-oceanic and continental-margin arc systems: Analogs for Archean systems

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Earth’s continental crust has grown and been recycled throughout geologic history along convergent plate margins. The main locus of continental crustal growth is in intra-oceanic and continental-margin arc systems in Archean time. In arc systems, oceanic lithosphere is subducted to the deeper mantle, and together with its overlying sedimentary sequence is in some cases off-scraped to form accretionary prisms. Fluids are released from the subducting slab to chemically react with the mantle wedge, forming mafic-ultramafic metasomatites, whose partial melting generates mafic melts that rise up to form arcs. In intra-oceanic arcs, they produce dominantly basaltic lavas, with a mid-crust that includes variably-developed vertically-walled intermediate plutons and higher-level dikes and sills. In continental-margin arcs, different petrogenetic processes cause assimilation and fractionation of basaltic magmas, partial melting/reworking of juvenile basaltic rocks, and mixing of mantle- and crust-derived melts, so they produce andesitic calc-alkaline melts but still have a mid-crust dominated by vertically-walled felsic plutons, which form 3-D dome-and-basin structures, akin to those in some Archean terranes such as parts of the Pilbara and Zimbabwe cratons. Notably, the continental crust of Archean times is dominated by tonalite-trondhjemite-granodiorite (TTG) plutons, similar to that of the mid-crust of these arc systems, suggesting that early continental crust may have formed largely by the amalgamation of multiple arc systems. The patterns of magmatism, in terms of petrogenesis, rock types, duration of magmatic and accretionary events, and the spatial scales of deformation and magmatism have remained essentially the same throughout geological history, demonstrating that plate tectonic processes characterized by subduction and arc magmatism have been in operation at least as long as recorded by the preserved geologic record, since the Eoarchean. However, the early Earth was dominated by accretionary orogens and oceanic arcs, that gradually grew thicker through multiple accretion events to form early continental-margin arcs by 3.5–3.2 Ga, and accretionary orogens. Slab melting and warmer metamorphism was more common in Archean arc systems due to higher mantle temperatures. These early arcs were further amalgamated into large emergent continents by ∼3.2–3.0 Ga, allowing large-scale processes such as lithospheric rifting and continental collisions, and the start of the supercontinent cycle. Further work should apply the null hypothesis, that plate tectonics explains the geologic record, to test for differences in the style of plate tectonics and magmatism through time, based on the fundamental difference in planetary heat production and the evolution of rotational dynamics of the Earth-Sun-Moon system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott D H, Hoffman S E. 1984. Archaean plate tectonics revisited 1. Heat flow, spreading rate, and the age of subducting oceanic lithosphere and their effects on the origin and evolution of continents. Tectonics, 3: 429–448

    Article  Google Scholar 

  • Adam J, Rushmer T, O’Neil J, Francis D. 2012. Hadean greenstones from the Nuvvuagittuq fold belt and the origin of the Earth’s early continental crust. Geology, 40: 363–366

    Article  Google Scholar 

  • Agrusta R, van Hunen J, Goes S. 2018. Strong plates enhance mantle mixing in early Earth. Nat Commun, 9: 2708

    Article  Google Scholar 

  • Anderson J L. 1990. The Nature and Origin of Cordilleran Magmatism. In: Geological Society of America Memoir. 174. Boulder, CO: Geological Society of America

    Google Scholar 

  • Arai S, Ishimaru S. 2007. Insights into petrologic characteristics of the lithosphere of mantle wedge beneath arcs through peridotite xenoliths: A review. J Petrol, 49: 665–695

    Article  Google Scholar 

  • Arculus R J, Wills K J A. 1980. The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc. J Petrol, 21: 743–799

    Article  Google Scholar 

  • Arculus R J. 2003. Use and abuse of the terms calcalkaline and calcalkalic. J Petrol, 44: 929–935

    Article  Google Scholar 

  • Aulbach S, Arndt N T. 2019. Eclogites as palaeodynamic archives: Evidence for warm (not hot) and depleted (but heterogeneous) Archaean ambient mantle. Earth Planet Sci Lett, 505: 162–172

    Article  Google Scholar 

  • Aulbach S, Jacob D E, Cartigny P, Stern R A, Simonetti S S, Wörner G, Viljoen K S. 2017. Eclogite xenoliths from Orapa: Ocean crust recycling, mantle metasomatism and carbon cycling at the western Zimbabwe craton margin. Geochim Cosmochim Acta, 213: 574–592

    Article  Google Scholar 

  • Babeyko A Y, Sobolev S V. 2005. Quantifying different modes of the Late Cenozoic shortening in the Central Andes. Geology, 33: 621–624

    Article  Google Scholar 

  • Balázs A, Matenco L, Magyar I, Horváth F, Cloetingh S. 2016. The link between tectonics and sedimentation in back-arc basins: New genetic constraints from the analysis of the Pannonian Basin. Tectonics, 35: 1526–1559

    Article  Google Scholar 

  • Bédard J H. 2006. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim Cosmochim Acta, 70: 1188–1214

    Article  Google Scholar 

  • Bédard J H. 2018. Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geosci Front, 9: 19–49

    Article  Google Scholar 

  • Behn M D, Kelemen P B. 2006. Stability of arc lower crust: Insights from the Talkeetna arc section, south central Alaska, and the seismic structure of modern arcs. J Geophys Res, 111: B11207

    Google Scholar 

  • Benner S A, Bell E A, Biondi E, Brasser R, Carell T, Kim H J, Mojzsis S J, Omran A, Pasek M A, Trail D. 2020. When did life likely emerge on Earth in an RNA-first process? Chem Systems Chem, 2: e1900035

    Google Scholar 

  • Bercovici D, Tackley P, Ricard Y. 2015. The generation of plate tectonics from mantle dynamics. In: Bercovici D, Schubert G. eds. Treatise on Geophysics. New York: Elsevier. 271–318

    Chapter  Google Scholar 

  • Billings M P. 1937. Regional metamorphism of the Littleton-Moosilauke area, New Hampshire. GSA Bull, 48: 463–566

    Article  Google Scholar 

  • Bilqees R, Qasim Jan M, Asif Khan M, Windley B F. 2016. Silicate-oxide mineral chemistry of mafic-ultramafic rocks as an indicator of the roots of an island arc: The Chilas Complex, Kohistan (Pakistan). Island Arc, 25: 4–27

    Article  Google Scholar 

  • Bird P. 1978. Initiation of intracontinental subduction in the Himalaya. J Geophys Res, 83: 4975–4987

    Article  Google Scholar 

  • Bird P. 2003. An updated digital model of plate boundaries. Geochem Geophys Geosyst, 4: 1027

    Article  Google Scholar 

  • Bonner H, Kröner A, Jacob D E, Che X C, Wong J, Xie H. 2020. Cold avalanche, “super subduction”, mantle overturn, followed by buoyant subduction of an oceanic plateau and the formation of TTG’s during the Eocene in Vitu Levu, Fiji Islands. Precambrian Res, 353: 105971

    Google Scholar 

  • Bradley D C, Kusky T M, Haeussler P, Rowley D C, Goldfarb R, Nelson S. 2003. Geologic signature of early ridge subduction in the accretionary wedge, forearc basin, and magmatic arc of south-central Alaska. In: Sisson V B, Roeske S, Pavlis T L, eds. Geology of a Transpressional Orogen Developed During a Ridge-Trench Interaction Along the North Pacific Margin. Geol Soc Am Spec Pap, 371. 19–50

  • Bradley D C, Kusky T M. 1986. Geologic evidence for rate of plate convergence during the Taconic arc- continent collision. J Geol, 94: 667–681

    Article  Google Scholar 

  • Brown E H, McClelland W C. 2000. Pluton emplacement by sheeting and vertical ballooning in part of the southeast Coast Plutonic Complex, British Columbia. Geol Soc Am Bull, 112: 708–719

    Article  Google Scholar 

  • Brown M, Johnson T, Gardiner N J. 2020. Plate tectonics and the Archean Earth. Annu Rev Earth Planet Sci, 48: 291–320

    Article  Google Scholar 

  • Brown M, Johnson T. 2018. Secular change in metamorphism and the onset of global plate tectonics. Am Mineral, 103: 181–196

    Article  Google Scholar 

  • Brown M, Johnson T. 2019. Metamorphism and the evolution of subduction on Earth. Am Mineral, 104: 1065–1082

    Article  Google Scholar 

  • Brown M. 2007. Crustal melting and melt extraction, ascent and emplacement in orogens: Mechanisms and consequences. J Geol Soc, 164: 709–730

    Article  Google Scholar 

  • Burchfiel B C, Chen Z L, Hodges K V, Liu Y P, Royden L H, Deng C G, Xu J. 1992. The south Tibetan detachment system, Himalayan orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geol Soc Am Spec Pap, 269. 41

    Google Scholar 

  • Burke K, Dewey J F, Kidd W S F. 1977. World distribution of sutures—The sites of former oceans. Tectonophysics, 40: 69–99

    Article  Google Scholar 

  • Burke K, Ashwal L D, Webb S J. 2003. New way to map old sutures using deformed alkaline rocks and carbonatites. Geology, 31: 391

    Article  Google Scholar 

  • Burke K, Khan S. 2006. Geoinformatic approach to global nepheline syenite and carbonatite distribution: Testing a Wilson cycle model. Geosphere, 2: 53

    Article  Google Scholar 

  • Burke K, Kidd W S F. 1978. Were Archean continental geothermal gradients much steeper than those of today? Nature, 272: 240–241

    Article  Google Scholar 

  • Castro A, Gerya T, Garcia-Casco A, Fernandez C, Diaz-Alvarado J, Moreno-Ventas I, Low I. 2010. Melting relations of MORB- sediment mélanges in underplated mantle wedge plumes: Implications for the origin of Cordilleran-type batholiths. J Petrol, 51: 1267–1295

    Article  Google Scholar 

  • Cawood P A, Hawkesworth C J, Pisarevsky S A, Dhuime B, Capitanio F A, Nebel O. 2018. Geological archive of the onset of plate tectonics. Phil Trans R Soc A, 376: 20170405

    Article  Google Scholar 

  • Cawood P A, Kroner A, Collins W J, Kusky T M, Mooney W D, Windley B F. 2009. Accretionary orogens through Earth history. Geol Soc Lond Spec Publ, 318: 1–36

    Article  Google Scholar 

  • Chapman A. 2012. Late Cretaceous gravitational collapse of the southern Sierra Nevada batholith, California. Geosphere, 8: 314–341

    Article  Google Scholar 

  • Chemenda A I, Yang R K, Hsieh C H, Groholsky A L. 1997. Evolutionary model for the Taiwan collision based on physical modelling. Tectonophysics, 274: 253–274

    Article  Google Scholar 

  • Claeson D T, Meurer W P. 2004. Fractional crystallization of hydrous basaltic “arc-type” magmas and the formation of amphibole-bearing gabbroic cumulates. Contrib Mineral Petrol, 147: 288–304

    Article  Google Scholar 

  • Clarke G L, Daczko N R, Miescher D. 2013. Identifying relic igneous garnet and clinopyroxene in eclogite and granulite, Breaksea Orthogneiss, New Zealand. J Petrol, 54: 1921–1938

    Article  Google Scholar 

  • Clift P D, Schouten H, Draut A E. 2003. A general model of arc-continent collision and subduction polarity reversal from Taiwan and the Irish Caledonides. Geol Soc Lond Spec Publ, 219: 81–98

    Article  Google Scholar 

  • Condie K C. 1997. Plate Tectonics and Crustal Evolution. 4th ed. Oxford: Butterworth-Heinemann

    Google Scholar 

  • Conrad W K, Kay R W. 1984. Ultramafic and mafic inclusions from Adak Island: Crystallization history, and implications for the nature of primary magmas and crustal evolution in the Aleutian arc. J Petrol, 25: 88–125

    Article  Google Scholar 

  • Cook F A, van der Velden A J, Hall K W, Roberts B J. 1999. Frozen subduction in Canada’s Northwest Territories: Lithoprobe deep lithospheric reflection profiling of the western Canadian Shield. Tectonics, 18: 1–24

    Article  Google Scholar 

  • Currie C, Ducea M N, DeCelles P G, Beaumont C. 2015. Geodynamic models of Cordilleran orogens: Gravitational instability of magmatic arc roots. Geol Soc Am Memoir, 212: 1–22

    Google Scholar 

  • Daczko N R, Piazolo S, Meek U, Stuart C A, Elliott V. 2016. Hornblendite delineates zones of mass transfer through the lower crust. Sci Rep, 6: 31369

    Article  Google Scholar 

  • Dai J G, Wang C S, Stern R J, Yang K, Shen J. 2021. Forearc magmatic evolution during subduction initiation: Insights from an Early Cretaceous Tibetan ophiolite and comparison with the Izu-Bonin-Mariana forearc. GSA Bull, 133: 753–776

    Article  Google Scholar 

  • Davidson J P, Arculus R J. 2005. The significance of Phanerozoic arc magmatism in generating continental crust. In: Brown M, Rushmer T, eds. Evolution and Differentiation of the Continental Crust. Cambridge: Cambridge University Press. 135–172

    Google Scholar 

  • Davies J H, von Blanckenburg F. 1995. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett, 129: 85–102

    Article  Google Scholar 

  • De Paoli M C, Clarke G L, Klepeis K A, Allibone A H, Turnbull I M. 2009. The eclogite granulite transition: mafic and intermediate assemblages at Breaksea Sound, New Zealand. J Petrol, 50: 2307–2343

    Article  Google Scholar 

  • de Wit M J, Ashwal L D. 1997. Tectonic Evolution of Greenstone Belts. Oxford Monograph on Geology and Geophysics. 809

  • de Wit M J, Hart R A. 1993. Earth’s earliest continental lithosphere, hydrothermal flux and crustal recycling. Lithos, 30: 309–335

    Article  Google Scholar 

  • de Wit M J, Roering C, Hart R J, Armstrong R A, de Ronde C E J, Green R W E, Tredoux M, Peberdy E, Hart R A. 1992. Formation of an Archaean continent. Nature, 357: 553–562

    Article  Google Scholar 

  • DeBari S M, Taylor B, Spencer K, Fujioka K. 1999. A trapped Philippine Sea plate origin for MORB from the inner slope of the Izu-Bonin trench. Earth Planet Sci Lett, 174: 183–197

    Article  Google Scholar 

  • DeCelles P G. 2004. Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western U.S.A.. Am J Sci, 304: 105–168

    Article  Google Scholar 

  • DeCelles P G, Ducea M N, Kapp P, Zandt G. 2009. Cyclicity in Cordilleran orogenic systems. Nat Geosci, 2: 251–257

    Article  Google Scholar 

  • Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662–665

    Article  Google Scholar 

  • Demouy S, Paquette J L, de Saint Blanquat M, Benoit M, Belousova E A, O’Reilly S Y, García F, Tejada L C, Gallegos R, Sempere T. 2012. Spatial and temporal evolution of Liassic to Paleocene arc activity in southern Peru unraveled by zircon U-Pb and Hf in-situ data on plutonic rocks. Lithos, 155: 183–200

    Article  Google Scholar 

  • Deng H, Jia N, Kusky T, Polat A, Peng G, Huang B, Wang L, Wang J. 2022. From subduction initiation to hot subduction: Life of a Neoarchean subduction zone from the Dengfeng greenstone belt, North China Craton. GSA Bull, 134: 1277–1300

    Article  Google Scholar 

  • Depine G V, Andronicos C L, Phipps-Morgan J. 2008. Near-isothermal conditions in the middle and lower crust induced by melt migration. Nature, 452: 80–83

    Article  Google Scholar 

  • Dewey J F, Shackleton R M, Chengfa C, Yiyin S. 1988. The tectonic evolution of the Tibetan Plateau. Phil Trans R Soc Lond A, 327: 379–413

    Article  Google Scholar 

  • Dewey J F. 1977. Suture zone complexities: A review. Tectonophysics, 40: 53–67

    Article  Google Scholar 

  • Dewey J F. 1988. Extensional collapse of orogens. Tectonics, 7: 1123–1139

    Article  Google Scholar 

  • Dhuime B, Bosch D, Garrido C J, Bodinier J L, Bruguier O, Hussain S S, Dawood H. 2009. Geochemical architecture of the lower to middle-crustal section of a paleo-island arc (Kohistan complex, Jijal-Kamila area, northern Pakistan): Implications for the evolution of an oceanic subduction zone. J Petrol, 50: 531–569

    Article  Google Scholar 

  • Dick H J B, Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol, 86: 54–76

    Article  Google Scholar 

  • Dongre A N, Jacob D E, Stern R A. 2015. Subduction-related origin of eclogite xenoliths from the Wajrakarur kimberlite field, Eastern Dharwar craton, Southern India: Constraints from petrology and geochemistry. Geochim Cosmochim Acta, 166: 165–188

    Article  Google Scholar 

  • Dorais M J, Atkinson M, Kim J, West D P, Kirby G A. 2012. Where is the Iapetus suture in northern New England? A study of the Ammonoosuc Volcanics, Bronson Hill terrane, New Hampshire. Can J Earth Sci, 49: 189–205

    Article  Google Scholar 

  • Dorais M J, Workman J, Aggarwal J. 2008. The petrogenesis of the Highlandcroft and Oliverian Plutonic Suites, New Hampshire: Implications for the structure of the Bronson Hill terrane. Am J Sci, 308: 73–99

    Article  Google Scholar 

  • Dorobek S L. 2008. Carbonate-platform facies in volcanic-arc settings: Characteristics and controls on deposition and stratigraphic development. In: Draut A E, Clift P D, Scholl D W, eds. Formation and Applications of the Sedimentary Record in Arc Collision Zones. Geol Soc Am Spec Pap, 436: 55–90

  • Draper G, Gutiérrez G, Lewis J F. 1996. Thrust emplacement of the Hispaniola peridotite belt: Orogenic expression of the mid-Cretaceous Caribbean arc polarity reversal? Geology, 24: 1143

    Article  Google Scholar 

  • Drummond B J, Goleby B R, Swager C P. 2000. Crustal signature of Late Archaean tectonic episodes in the Yilgarn craton, Western Australia: Evidence from deep seismic sounding. Tectonophysics, 329: 193–221

    Article  Google Scholar 

  • Ducea M N, Barton M D. 2007. Igniting flare-up events in Cordilleran arcs. Geology, 35: 1047

    Article  Google Scholar 

  • Ducea M N, Chapman A D, Bowman E, Triantafyllou A. 2021a. Arclogites and their role in continental evolution; part 1: Background, locations, petrography, geochemistry, chronology and thermobarometry. Earth-Sci Rev, 214: 103375

    Article  Google Scholar 

  • Ducea M N, Chapman A D, Bowman E, Balica C. 2021b. Arclogites and their role in continental evolution; part 2: Relationship to batholiths and volcanoes, density and foundering, remelting and long-term storage in the mantle. Earth-Sci Rev, 214: 103476

    Article  Google Scholar 

  • Ducea M N, Otamendi J E, Bergantz G, Stair K M, Valencia V A, Gehrels G E. 2010. Timing constraints on building an intermediate plutonic arc crustal section: U- Pb zircon geochronology of the Sierra Valle Fértil-La Huerta, Famatinian arc, Argentina. Tectonics, 29: TC4002

    Article  Google Scholar 

  • Ducea M N, Paterson S R, DeCelles P G. 2015b. High-volume magmatic events in subduction systems. Elements, 11: 99–104

    Article  Google Scholar 

  • Ducea M N, Saleeby J B, Bergantz G. 2015a. The architecture, chemistry, and evolution of continental magmatic arcs. Annu Rev Earth Planet Sci, 43: 299–331

    Article  Google Scholar 

  • Ducea M N, Saleeby J B. 1996. Buoyancy sources for a large, unrooted mountain range, the Sierra Nevada, California: Evidence from xenolith thermobarometry. J Geophys Res, 101: 8229–8244

    Article  Google Scholar 

  • England P C, Thompson A. 1986. Some thermal and tectonic models for crustal melting in continental collision zones. Geol Soc Lond Spec Publ, 19: 83–94

    Article  Google Scholar 

  • England P, Bickle M. 1984. Continental thermal and tectonic regimes duringthe Archean. J Geol, 92: 353–367

    Article  Google Scholar 

  • England P, Houseman G. 1989. Extension during continental convergence, with application to the Tibetan plateau. J Geophys Res, 94:17561–17,579

    Google Scholar 

  • Ernst R E, Dickson A J, Bekker A. 2021. Large Igneous Provinces: A driver of global environmental and biotic changes. AGU Geophys Monog Ser, doi: https://doi.org/10.1002/9781119507444

  • Fan H R, Yang K F, Hu F F, Liu S, Wang K Y. 2016. The giant Bayan Obo REE-Nb-Fe deposit, China: Controversy and ore genesis. Geosci Front, 7: 335–344

    Article  Google Scholar 

  • Feng P, Wang L, Brown M, Johnson T E, Kylander-Clark A, Piccoli P M. 2021. Partial melting of ultrahigh-pressure eclogite by omphacite-breakdown facilitates exhumation of deeply-subducted crust. Earth Planet Sci Lett, 554: 116664

    Article  Google Scholar 

  • Finney B, Turner S, Hawkesworth C, Larsen J, Nye C, George R, Bindeman I, Eichelberger J. 2008. Magmatic differentiation at an Island-arc Caldera: Okmok Volcano, Aleutian Islands, Alaska. J Petrol, 49: 857–884

    Article  Google Scholar 

  • Fliedner M M, Klemperer S L. 2000. Crustal structure transition from oceanic arc to continental arc, eastern Aleutian Islands and Alaska Peninsula. Earth Planet Sci Lett, 179: 567–579

    Article  Google Scholar 

  • Foley B J. 2018. The dependence of planetary tectonics on mantle thermal state: Applications to early Earth evolution. Phil Trans R Soc A, 376: 20170409

    Article  Google Scholar 

  • Freeburn R, Bouilhol P, Maunder B, Magni V, van Hunen J. 2017. Numerical models of the magmatic processes induced by slab breakoff. Earth Planet Sci Lett, 478: 203–213

    Article  Google Scholar 

  • Fu D, Kusky T, Wilde S A, Polat A, Huang B, Zhou Z. 2019. Early Paleozoic collision-related magmatism in the eastern North Qilian orogen, northern Tibet: A linkage between accretionary and collisional orogenesis. GSA Bull, 131: 1031–1056

    Article  Google Scholar 

  • Gazel E, Hayes J L, Hoernle K, Kelemen P, Everson E, Holbrook W S, Hauff F, van den Bogaard P, Vance E A, Chu S, Calvert A J, Carr M J, Yogodzinski G. M. 2015. Continental crust generated in oceanic arcs. Nature Geosci, 8: 321–327

    Article  Google Scholar 

  • Gehrels G, Rusmore M, Woodsworth G, Crawford M, Andronicos C, Hollister L, Patchett J, Ducea M, Butler R, Klepeis K, Davidson C, Friedman R, Haggart J, Mahoney B, Crawford W, Pearson D, Girardi J. 2009. U-Th-Pb geochronology of the Coast Mountains batholith in north-coastal British Columbia: Constraints on age and tectonic evolution. GSA Bull, 121: 1341–1361

    Article  Google Scholar 

  • Genda H, Brasser R, Mojzsis S J. 2017. The terrestrial late veneer from core disruption of a lunar-sized impactor. Earth Planet Sci Lett, 480: 25–32

    Article  Google Scholar 

  • Gibson G M, Ireland T R. 1999. Black Giants anorthosite, New Zealand: A Paleozoic analogue of Archean stratiform anorthosites and implications for the formation of Archean high-grade gneiss terranes. Geology, 27: 131–134

    Article  Google Scholar 

  • Göğüş, O H, Pysklywec R N, Şengör A M C, Gün E. 2017. Drip tectonics and the enigmatic uplift of the Central Anatolian Plateau. Nat Commun, 8: 1538

    Article  Google Scholar 

  • Goodwin A M. 1996. Principles of Precambrian Geology. London: Academic Press. 327

    Google Scholar 

  • Grevemeyer I, Kodaira S, Fujie G, Takahashi N. 2021. Structure of oceanic crust in back-arc basins modulated by mantle source heterogeneity. Geology, 49: 468–472

    Article  Google Scholar 

  • Hacker B R, Kelemen P B, Behn M D. 2011. Differentiation of the continental crust by relamination. Earth Planet Sci Lett, 307: 501–516

    Article  Google Scholar 

  • Hacker B R, Kelemen P B, Behn M D. 2015. Continental lower crust. Annu Rev Earth Planet Sci, 43: 167–205

    Article  Google Scholar 

  • Hacker B R, Kelemen P B, Rioux M, McWilliams M O, Gans P B, Reiners P W, Layer P W, Söderlund U, Vervoort J D. 2011. Thermochronology of the Talkeetna intraoceanic arc of Alaska: Ar/Ar, U-Th/He, Sm-Nd, and Lu-Hf dating. Tectonics, 30, https://doi.org/10.1029/2010TC002798

  • Hamilton W. 1969. Mesozoic California and the underflow of Pacific mantle. GSA Bull, 80: 2409

    Article  Google Scholar 

  • Harrison A, White R S. 2006. Lithospheric structure of an active backarc basin: The Taupo Volcanic Zone, New Zealand. Geophys J Int, 167: 968–990

    Article  Google Scholar 

  • Harrison T M. 2020. Hadean Earth. Springer, ebook, doi: https://doi.org/10.1007/978-3-030-46687-9.291

  • Hawkesworth C J, Cawood P A, Dhuime B. 2020. The evolution of the continental crust and the onset of plate tectonics. Front Earth Sci, 8: 326

    Article  Google Scholar 

  • Hawkesworth C J, Kemp A I S. 2006. Evolution of the continental crust. Nature, 443: 811–817

    Article  Google Scholar 

  • Helmstaedt H, Schulze D J. 1989. Southern African kimberlites and the mantle sample: Implications for Archean tectonics and lithosphere evolution. In: Ross J, ed. Kimberlites and Related Rocks. Geological Society of Australia Special Publication 14. 358–368

  • Hibbard J P, Van Staal C R, Rankin D W, Williams H. 2006. Lithotectonic map of the Appalachian Orogen: Canada-United States of America. Geol Surv Canada ‘A’ Series Map, 2096A, doi: https://doi.org/10.4095/221912

  • Hickman A H. 2016. Northwest Pilbara Craton: A Record of 450 Million Years in the Growth of Archean Continental Crust Report. Perth: Geological Survey of Western Australia

    Google Scholar 

  • Hildebrand R S, Whalen J B, Bowring S A. 2018. Resolving the crustal composition paradox by 3.8 billion years of slab failure magmatism and collisional recycling of continental crust. Tectonophysics, 734–735: 69–88

    Article  Google Scholar 

  • Hildebrand R S, Whalen J B. 2014a. Arc and slab-failure magmatism in Cordilleran batholiths I—The Cretaceous Coastal batholith of Peru and its role in South American orogenesis and hemispheric subduction flip. Geosci Can, 41: 255

    Article  Google Scholar 

  • Hildebrand R S, Whalen J B. 2014b. Arc and slab-failure magmatism in Cordilleran batholiths II—The Cretaceous Peninsular Ranges batholith of Southern and Baja California. Geosci Can, 41: 399

    Article  Google Scholar 

  • Hildebrand R S, Whalen J B. 2017. The tectonic setting and origin of Cretaceous batholiths within the North American Cordillera: The case for slab failure magmatism and its significance for crustal growth. Geol Soc Am Spec Paper. 532

  • Hildebrand R S, Whalen J B. 2021. Arc and slab-failure magmatism of the Taconic orogeny, western New England, USA. Geol Soc Lond Spec Publ, 503: 409–422

    Article  Google Scholar 

  • Hildebrand R S. 2013. Mesozoic Assembly of the North American Cordillera. Geol Soc Am Spec Pap 495. 179

    Google Scholar 

  • Hofmeister A M, Criss R E, Criss E M. 2022. Links of planetary energetics to moon size, orbit, and planet spin: A new mechanism for plate tectonics. In: Foulger G R, Hamilton L C, Jurdy D M, Stein C A, Howard K A, Stein S, eds. In the Footsteps of Warren B. Hamilton: New Ideas in Earth Science. Geol Soc Am Spec Pap 553. 1–10

    Google Scholar 

  • Hollocher K. 1993. Geochemistry and origin of volcanics in the Ordovician Partridge Formation, Bronson Hill Anticlinorium, west-central Massachusetts. Amer J Sci, 293: 671–721

    Article  Google Scholar 

  • Hollocher K, Bull J, Robinson P. 2002. Geochemistry of the metamorphosed Ordovician Taconian Magmatic Arc, Bronson Hill anticlinorium, western New England. Phys Chem Earth Parts A B C, 27: 5–45

    Article  Google Scholar 

  • Horton B K. 2018. Tectonic regimes of the central and southern Andes: Responses to variations in plate coupling during subduction. Tectonics, 37: 402–429

    Article  Google Scholar 

  • Horton B K, Capaldi T N, Perez N D. 2022. The role of flat slab subduction, ridge subduction, and tectonic inheritance in Andean deformation. Geology, https://doi.org/10.1130/G50094.1

  • Huang B, Kusky T M, Johnson T E, Wilde S A, Wang L, Polat A, Fu D. 2020. Paired metamorphism in the Neoarchean: A record of accretionary-to-collisional orogenesis in the North China Craton. Earth Planet Sci Lett, 543: 116355

    Article  Google Scholar 

  • Huang Y, Wang L, Kusky T, Robinson P T, Peng S, Polat A, Deng H. 2017. High-Cr chromites from the Late Proterozoic Miaowan Ophiolite Complex, South China: Implications for its tectonic environment of formation. Lithos, 288–289: 35–54

    Article  Google Scholar 

  • Huang Y, Wang L, Robinson P T, Ning W, Zhong Y, Wang J, Hu W, Polat A, Kusky T. 2021. Podiform chromitite genesis in an Archean juvenile forearc setting: The 2.55 Ga Zunhua chromitites, North China Craton. Lithos, 394–395: 106194

    Article  Google Scholar 

  • Isozaki Y, Aoki K, Nakama T, Yanai S. 2010. New insight into a subduction-related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Res, 18: 82–105

    Article  Google Scholar 

  • Jacobi R D, Mitchell C. 2018. Aseismic ridge subduction as a driver for the Ordovician Taconic orogeny and Utica foreland basin in New England and New York State. Geol Soc Am Spec Pap 540. 617–659

    Google Scholar 

  • Jagoutz O, Behn M D. 2013. Foundering of lower island-arc crust as an explanation for the origin of the continental Moho. Nature, 504: 131–134

    Article  Google Scholar 

  • Jagoutz O, Kelemen P B. 2015. Role of arc processes in the formation of continental crust. Annu Rev Earth Planet Sci, 43: 363–404

    Article  Google Scholar 

  • Jagoutz O, Müntener O, Ulmer P, Pettke T, Burg J P, Dawood H, Hussain S. 2007. Petrology and mineral chemistry of lower crustal intrusions: The Chilas Complex, Kohistan (NW Pakistan). J Petrol, 48: 1895–1953

    Article  Google Scholar 

  • Jan M Q, Tahirkheli A Z. 1990. The Tora Tigga complex, southern Dir, NW Pakistan: An example of mafic-ultramafic rocks in the bottom of an island arc. Univ Peshawar Geol Bull, 23: 231–251

    Google Scholar 

  • Jelsma H A, Dirks P H G M. 2002. Neoarchaean tectonic evolution of the Zimbabwe Craton. Geol Soc Lond Spec Publ, 199: 183–211

    Article  Google Scholar 

  • Johnston S T. 2008. The Cordilleran ribbon continent of North America. Annu Rev Earth Planet Sci, 36: 495–530

    Article  Google Scholar 

  • Johnson T E, Brown M, Kaus B J P, Vantongeren J A. 2014. Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat Geosci, 7: 47–52

    Article  Google Scholar 

  • Johnson T E, Kirkland C L, Gardiner N J, Brown M, Smithies R H, Santosh M. 2019. Secular change in TTG compositions: Implications for the evolution of Archaean geodynamics. Earth Planet Sci Lett, 505: 65–75

    Article  Google Scholar 

  • Karabinos P, Macdonald F A, Crowley J L. 2017. Bridging the gap between the foreland and hinterland I: Geochronology and plate tectonic geometry of Ordovician magmatism and terrane accretion on the Laurentian margin of New England. Am J Sci, 317: 515–554

    Article  Google Scholar 

  • Kay R W, Kay S M. 1993. Delamination and delamination magmatism. Tectonophysics, 219: 177–189

    Article  Google Scholar 

  • Kelemen P B. 1995. Genesis of high Mg# andesites and the continental crust. Contrib Mineral Petrol, 120: 1–19

    Article  Google Scholar 

  • Kelemen P B, Behn M D. 2016. Formation of lower continental crust by relamination of buoyant arc lavas and plutons. Nat Geosci, 9: 197–205

    Article  Google Scholar 

  • Kelemen P B, Hanghoj K, Greene A R. 2003. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick R L, Turekian K K, eds. Treatise of Geochemistry, 3. Amsterdam: Elsevier. 593–659

  • Kendall J M, Sol S, Thomson C J, White D J, Asudeh I, Snell C S, Sutherland F H. 2002. Seismic heterogeneity and anisotropy in the Western Superior Province, Canada: Insights into the evolution of an Archaean craton. Geol Soc Lond Spec Publ, 199: 27–44

    Article  Google Scholar 

  • Khan M, Asif, Jan M Q, Windley B F, Tarney J, Thirlwall M F. 1989. The Chilas mafic igneous complex: The root of the Kohistan island arc in the Himalayas of N. Pakistan. Geol Soc Am Spec Pap, 232: 75–94

    Google Scholar 

  • Kiddle E J, Edwards B R, Loughlin S C, Petterson M, Sparks R S J, Voight B. 2010. Crustal structure beneath Montserrat, Lesser Antilles, constrained by xenoliths, seismic velocity structure and petrology. Geophys Res Lett, 37: L00E11

    Article  Google Scholar 

  • Klatt J M, Chennu A, Arbic B K, Biddanda B A, Dick G J. 2021. Possible link between Earth’s rotation rate and oxygenation. Nat Geosci, 14: 564–570

    Article  Google Scholar 

  • Komatsu M, Osanai Y, Toyoshima T, Miyashita S. 1989. Evolution of the Hidaka metamorphic belt, northern Japan. Geol Soc Lond Spec Publ, 43: 487–493

    Article  Google Scholar 

  • Komiya T. 2004. Material circulation model including chemical differentiation within the mantle and secular variation of temperature and composition of the mantle. Phys Earth Planet Inter, 146: 333–367

    Article  Google Scholar 

  • Komiya T, Maruyama S, Masuda T, Nohda S, Hayashi M, Okamoto K. 1999. Plate tectonics at 3.8–3.7 Ga: field evidence from the Isua accretionary complex, southern West Greenland. J Geol, 107: 515–554

    Article  Google Scholar 

  • Korenaga J. 2011. Thermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth. J Geophys Res, 116: B12403

    Article  Google Scholar 

  • Korenaga J. 2016. Can mantle convection be self-regulated? Sci Adv, 2: e1601168

    Article  Google Scholar 

  • Korenaga J. 2017. Pitfalls in modeling mantle convection with internal heat production. J Geophys Res-Solid Earth, 122: 4064–4085

    Article  Google Scholar 

  • Korenaga J. 2018. Crustal evolution and mantle dynamics through Earth history. Phil Trans R Soc A, 376: 20170408

    Article  Google Scholar 

  • Korenaga J. 2021a. Hadean geodynamics and the nature of early continental crust. Precambrian Res, 359: 106178

    Article  Google Scholar 

  • Korenaga J. 2021b. Was there land on the early Earth? Life, 11: 1142

    Article  Google Scholar 

  • Kreemer C, Blewitt G, Klein E C. 2014. A geodetic plate motion and Global Strain Rate Model. Geochem Geophys Geosyst, 15: 3849–3889

    Article  Google Scholar 

  • Kröner A. 1984. Evolution, growth and stabilization of the Precambrian lithosphere. Phys Chem Earth, 15: 69–106

    Article  Google Scholar 

  • Kusky T M. 1989. Accretion of the Archean Slave Province. Geology, 17: 63

    Article  Google Scholar 

  • Kusky T M. 1993. Collapse of Archean orogens and the generation of late-to postkinematic granitoids. Geology, 21: 925

    Article  Google Scholar 

  • Kusky T M. 1998. Tectonic setting and terrane accretion of the Archean Zimbabwe craton. Geology, 26: 163

    Article  Google Scholar 

  • Kusky T M. 2004. Precambrian Ophiolites and Related Rocks, Developments in Precambrian Geology 13. Amsterdam: Elsevier Publishers. 748

    Google Scholar 

  • Kusky T M. 2011. Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Res, 20: 26–35

    Article  Google Scholar 

  • Kusky T M, Bradley D C, Donley D T, Rowley D, Haeussler P. 2003. Controls on intrusion of near-trench magmas of the Sanak-Baranof belt, Alaska, during Paleogene ridge subduction, and consequences for forearc evolution. In: Sisson V B, Roeske S, Pavlis T L, eds. Geology of a Transpressional Orogen Developed During a Ridge-Trench Interaction Along the North Pacific Margin. Geol Soc Am Spec Pap 371. 269–292

  • Kusky T M, Bradley D C, Haeussler P. 1997. Progressive deformation of the Chugach accretionary complex, Alaska, during a Paleogene ridge-trench encounter. J Struct Geol, 19: 139–157

    Article  Google Scholar 

  • Kusky T M, Ganley R, Lytwyn J, Polat A. 2004. The Resurrection Peninsula ophiolite, mélange, and accreted flysch belts of southern Alaska as an analog for trench-forearc systems in Precambrian orogens, Chapter 20. In: Kusky T M, ed. Precambrian Ophiolites and Related Rocks, Developments in Precambrian Geology 13. Amsterdam: Elsevier. 625–670

    Google Scholar 

  • Kusky T M, Glass A. 2007. Structure, Cr-Chemistry, and Age of the Border Ranges Ultramafic/Mafic Complex: A Suprasubduction Zone Ophiolite Complex. In: Geological Society of America, Special Paper 431 on the Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska. 207–225

  • Kusky T M, Huang Y, Wang L, Robinson P T, Wirth R, Polat A, Wei H. 2022. Vestiges of early Earth’s deep subduction and CHONSP cycle recorded in Archean ophiolitic podiform chromitites. Earth-Sci Rev, 227: 103968

    Article  Google Scholar 

  • Kusky T M, Wang L, Robinson P T, Huang Y, Wirth R, Ning W, Zhong Y, Polat A. 2021b. Ultra-high pressure inclusion in Archean ophiolitic podiform chromitite in mélange block suggests deep subduction on early Earth. Precambrian Res, 362: 106318

    Article  Google Scholar 

  • Kusky T M, Kidd W S F, Bradley D C. 1987. Displacement history of the Northern Arm Fault, and its bearing on the Post-Taconic evolution of north-central Newfoundland. J Geodyn, 7: 105–133

    Article  Google Scholar 

  • Kusky T M, Li J. 2003. Paleoproterozoic tectonic evolution of the North China Craton. J Asian Earth Sci, 22: 383–397

    Article  Google Scholar 

  • Kusky T M, Li X, Wang Z, Fu J, Ze L, Zhu P. 2014a. Are Wilson Cycles preserved in Archean cratons? A comparison of the North China and Slave cratons. Can J Earth Sci, 51: 297–311

    Article  Google Scholar 

  • Kusky T M, Polat A, Windley B F, Burke K C, Dewey J F, Kidd W S F, Maruyama S, Wang J P, Deng H, Wang Z S, Wang C, Fu D, Li X W, Peng H T. 2016. Insights into the tectonic evolution of the North China Craton through comparative tectonic analysis: A record of outward growth of Precambrian continents. Earth-Sci Rev, 162: 387–432

    Article  Google Scholar 

  • Kusky T M, Polat A. 1999. Growth of granite-greenstone terranes at convergent margins, and stabilization of Archean cratons. Tectonophysics, 305: 43–73

    Article  Google Scholar 

  • Kusky T M, Santosh M. 2009. The Columbia Connection in North China. Geol Soc Lond Spec Publ, 323: 49–71

    Article  Google Scholar 

  • Kusky T M, Vanyo J P. 1991. Plate Reconstructions Using Stromatolite Heliotropism: Principles and Applications. J Geol, 99: 321–335

    Article  Google Scholar 

  • Kusky T M, Vearncombe J. 1997. Chapter 3. Structure of Archean Greenstone Belts. In: de Wit M J, and Ashwal L D, eds. Tectonic Evolution of Greenstone Belts. Oxford Monograph Geol Geophys. 95–128

  • Kusky T M, Wang J, Wang L, Huang B, Ning W, Fu D, Peng H, Deng H, Polat A, Zhong Y, Shi G. 2020. Mélanges through time: Life Cycle of the world’s largest Archean mélange compared with Mesozoic and Paleozoic subduction-accretion-collision mélanges. Earth-Sci Rev, 209: 103303

    Article  Google Scholar 

  • Kusky T M, Windley B F, Polat A, Wang L, Ning W, Zhong Y. 2021a. Archean dome-and-basin style structures form during growth and death of intraoceanic and continental margin arcs in accretionary orogens. Earth-Sci Rev, 220: 103725

    Article  Google Scholar 

  • Kusky T M, Windley B F, Polat A. 2018. Geological evidence for the operation of plate tectonics throughout the Archean: Records from Archean paleo-plate boundaries. J Earth Sci, 29: 1291–1303

    Article  Google Scholar 

  • Kusky T M, Windley B F, Safonova I, Wakita K, Wakabayashi J, Polat A, Santosh M. 2013. Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: A record of 3.8billion years of sea floor spreading, subduction, and accretion. Gondwana Res, 24: 501–547

    Article  Google Scholar 

  • Kusky T M, Windley B F, Wang L, Wang Z, Li X, Zhu P. 2014b. Flat slab subduction, trench suction, and craton destruction: Comparison of the North China, Wyoming, and Brazilian cratons. Tectonophysics, 630: 208–221

    Article  Google Scholar 

  • Kusky T M, Windley B F, Zhai M G. 2007. Tectonic Evolution of the North China Block: From Orogen to Craton to Orogen. Geol Soc Lond Spec Publ, 280: 1–34

    Article  Google Scholar 

  • Kusky T M, Winsky P A. 1995. Structural relationships along a greenstone/shallow water shelf contact, Belingwe greenstone belt, Zimbabwe. Tectonics, 14: 448–471

    Article  Google Scholar 

  • Lamont T N, Searle M P, Waters D J, Roberts N M W, Palin R M, Smye A, Dyck B, Gopon P, Weller O M, St-Onge M R. 2020. Compressional origin of the Naxos metamorphic core complex, Greece: Structure, petrography, and thermobarometry. GSA Bull, 132: 149–197

    Article  Google Scholar 

  • Lee C T A, Anderson D L. 2015. Continental crust formation at arcs, the arclogite “delamination” cycle, and one origin for fertile melting anomalies in the mantle. Sci Bull, 60: 1141–1156

    Article  Google Scholar 

  • Lee C T A, Morton D M, Kistler R W, Baird A K. 2007. Petrology and tectonics of Phanerozoic continent formation: From island arcs to accretion and continental arc magmatism. Earth Planet Sci Lett, 263: 370–387

    Article  Google Scholar 

  • Lee H Y, Chung S L, Ji J, Qian Q, Gallet S, Lo C H, Lee T Y, Zhang Q. 2012. Geochemical and Sr-Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet. J Asian Earth Sci, 53: 96–114

    Article  Google Scholar 

  • Leelanandam C, Burke K, Ashwal L D, Webb S J. 2006. Proterozoic mountain building in Peninsular India: An analysis based primarily on alkaline rock distribution. Geol Mag, 143: 195–212

    Article  Google Scholar 

  • Lenardic A. 2018a. Volcanic-tectonic modes and planetary life potential. In: Deeg H J, Belmonte J A, eds. Handbook of Exoplanets, Springer. 1–20

  • Lenardic A. 2018b. The diversity of tectonic modes and thoughts about transitions between them. Phil Trans R Soc A, 376: 20170416

    Article  Google Scholar 

  • Leo G W. 1991. Oliverian domes, related plutonic rocks, and mantling ammonoosuc volcanics of the Bronson Hill Anticlinorium, New England Appalachians. United States Geol Surv Professional Pap. 1516

  • Levin V, Park J, Brandon M, Lees J, Peyton V, Gordeev E, Ozerov A. 2002b. Crust and upper mantle of Kamchatka from teleseismic receiver functions. Tectonophysics, 358: 233–265

    Article  Google Scholar 

  • Levin V, Shapiro N, Park J, Ritzwoller M. 2002a. Seismic evidence for catastrophic slab loss beneath Kamchatka. Nature, 418: 763–767

    Article  Google Scholar 

  • Li H, Wang M, Zeng X W, Luo A B, Zhang B C, Shen D. 2022. Partial melting caused by subduction of young, hot oceanic crust in shallow high-temperature and low-pressure environments: Indications from Middle and Late Jurassic oceanic plagiogranite in Shiquanhe, Central Tibet. Lithos, 420–421: 106698

    Google Scholar 

  • Li Q L, Chen F, Guo J H, Li X H, Yang Y H, Siebel W. 2007. Zircon ages and Nd-Hf isotopic composition of the Zhaertai Group (Inner Mongolia): Evidence for early Proterozoic evolution of the northern North China Craton. J Asian Earth Sci, 30: 573–590

    Article  Google Scholar 

  • Li Z X, Zhang S B, Zheng Y F, Hanchar J M, Gao P, Lu Y M, Su K, Sun F Y, Liang T. 2021. Crustal thickening and continental formation in the Neoarchean: Geochemical records by granitoids from the Taihua Complex in the North China Craton. Precambrian Res, 367: 106446

    Article  Google Scholar 

  • Ling M X, Liu Y L, Williams I S, Teng F Z, Yang X Y, Ding X, Wei G J, Xie L H, Deng W F, Sun W D. 2013. Formation of the world’s largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids. Sci Rep, 3: 1776

    Article  Google Scholar 

  • Liou J G, Maruyama S, Wang X, Graham S. 1990. Precambrian blueschist terranes of the world. Tectonophysics, 181: 97–111

    Article  Google Scholar 

  • MacGregor A M. 1951. Some milestones in the Precambrian of Southern Rhodesia. Geological Survey of Southern Rhodesia, Proceedings 38: 229–245

    Google Scholar 

  • MacKenzie L, Abers G A, Fischer K M, Syracuse E M, Protti J M, Gonzalez V, Strauch W. 2008. Crustal structure along the southern Central American volcanic front. Geochem Geophys Geosyst, 9: Q08S09

    Article  Google Scholar 

  • Marschall H R, Schumacher J C. 2012. Arc magmas sourced from mélange diapirs in subduction zones. Nat Geosci, 5: 862–867

    Article  Google Scholar 

  • Martin H, Moyen J F, Guitreau M, Blichert-Toft J, Le Pennec J L. 2014. Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos, 198–199: 1–13

    Article  Google Scholar 

  • Maruyama S, Liou J G, Terabayashi M. 1996. Blueschists and eclogites of the world and their exhumation. Int Geol Rev, 38: 485–594

    Article  Google Scholar 

  • Maruyama S, Yuen D A, Windley B F. 2007. Dynamics of plumes and superplumes through time. In: Yuen D A, Maruyama S, Karato S H, Windley B F, eds. Superplumes: Beyond Plate Tectonics. Netherlands: Springer. 441–502

    Chapter  Google Scholar 

  • Matthews K J, Maloney K T, Zahirovic S, Williams S E, Seton M, Müller R D. 2016. Global plate boundary evolution and kinematics since the late Paleozoic. Glob Planet Change, 146: 226–250

    Article  Google Scholar 

  • Maunder B, Prytulak J, Goes S, Reagan M. 2020. Rapid subduction initiation and magmatism in the Western Pacific driven by internal vertical forces. Nat Commun, 11: 1874

    Article  Google Scholar 

  • McKenzie D, Bickle M J. 1988. The volume and composition of melt generated by extension of the lithosphere. J Petrol, 29: 625–679

    Article  Google Scholar 

  • Milan L A, Daczko N R, Clarke G L. 2017. Cordillera Zealandia: A Mesozoic arc flare-up on the Palaeo-Pacific Gondwana margin. Sci Rep, 7: 261

    Article  Google Scholar 

  • Mitchell R N, Zhang N, Salminen J, Liu Y, Spencer C J, Steinberger B, Murphy J B, Li Z X. 2021. The supercontinent cycle. Nat Rev Earth Environ, 2: 358–374

    Article  Google Scholar 

  • Mooney W D, Weaver C S. 1989. Regional crustal structure and tectonics of the Pacific coastal states; California, Oregon, and Washington. In: Pakiser L C, Mooney W D, eds. Geophysical framework of the continental United States. Geol Soc Ame Memoir 172: 129–161

  • Mooney W D. 2020. The Moho Discontinuity. In: Elias S, ed. Encyclopedia of Geology, 2nd ed. Amsterdam: Elsevier

    Google Scholar 

  • Moores E M, Wakabayashi J, Unruh J R, Waechther S. 2006. A transect spanning 500 million years of active plate margin history: Outline and field trip guide. In: Prentice C S, Scotchmoor J G, Moores E M, Kiland J P, eds. 1906 San Francisco Earthquake GSA Field Guides. Geol Soc Am Field Guides 7. 373–413

  • Moores E M, Wakabayashi J, Unruh J R. 2002. Crustal-scale cross-section of the U.S. Cordillera, California and beyond, its tectonic significance, and speculations on the Andean Orogeny. Int Geol Rev, 44: 479–500

    Article  Google Scholar 

  • Moyen J F, van Hunen J. 2012. Short-term episodicity of Archaean plate tectonics. Geology, 40: 451–454

    Article  Google Scholar 

  • Müntener O, Ulmer P. 2006. Experimentally derived high-pressure cumulates from hydrous arc magmas and consequences for the seismic velocity structure of lower arc crust. Geophys Res Lett, 33: L21308

    Article  Google Scholar 

  • Musacchio G, White D J, Asudeh I, Thomson C J. 2004. Lithospheric structure and composition of the Archean western Superior Province from seismic refraction/wide-angle reflection and gravity modeling. J Geophys Res, 109: B03304

    Google Scholar 

  • Myers J S. 1985. Stratigraphy and structure of the Fiskenæsset Complex, southern West Greenland. Geol Surv Greenland Report, 150: 1–72

    Google Scholar 

  • Nagel T J, Hoffmann J E, Munker C. 2012. Generation of Eoarchean tonalite-trondhjemite-granodiorite series from thickened mafic arc crust. Geology, 40: 375–378

    Article  Google Scholar 

  • National Academies. 2020. National Academies of Sciences, Engineering, and Medicine. A Vision for NSF Earth Sciences 2020–2030. Earth in Time. Washington D C: The National Academies Press

    Google Scholar 

  • Nebel O, Capitanio F A, Moyen J F, Weinberg R F, Clos F, Nebel-Jacobsen Y J, Cawood P A. 2018. When crust comes of age: On the chemical evolution of Archaean, felsic continental crust by crustal drip tectonics. Phil Trans R Soc A, 376: 20180103

    Article  Google Scholar 

  • Nelson K D. 1991. A unified view of craton evolution motivated by recent deep seismic reflection and refraction results. Geophys J Int, 105: 25–35

    Article  Google Scholar 

  • Nicolas A, Hirn A, Nicolich R, Polino R. 1990. Lithospheric wedging in the western Alps inferred from the ECORS-CROP traverse. Geology, 18: 587

    Article  Google Scholar 

  • Ning W, Kusky T, Wang L, Huang B. 2022. Archean eclogite-facies oceanic crust indicates modern-style plate tectonics. Proc Natl Acad Sci USA, 119: e2117529119

    Article  Google Scholar 

  • Ning W, Kusky T, Wang J, Wang L, Deng H, Polat A, Huang B, Peng H, Feng P. 2020. From subduction initiation to arc-polarity reversal: Life cycle of an Archean subduction zone from the Zunhua ophiolitic mélange, North China Craton. Precambrian Res, 350: 105868

    Article  Google Scholar 

  • Ohara Y. 2006. Mantle process beneath Philippine Sea back-arc spreading ridges: A synthesis of peridotite petrology and tectonics. Isl Arc, 15: 119–129

    Article  Google Scholar 

  • Osanai Y, Komatsu M, Owada M. 1991. Metamorphism and granite genesis in the Hidaka metamorphic belt, Hokkaido, Japan. J Metamorph Geol, 9: 111–124

    Article  Google Scholar 

  • Otamendi J E, Ducea M N, Bergantz G W. 2012. Geological, petrological and geochemical evidence for progressive construction of an arc crustal section, Sierra de Valle Fertil, Famatinian Arc, Argentina. J Petrol, 53: 761–800

    Article  Google Scholar 

  • Paterson S R, Fowler Jr T K. 1993. Re-examining pluton emplacement processes. J Struct Geol, 15: 191–206

    Article  Google Scholar 

  • Paterson S R, Okaya D, Memeti V, Economos R, Miller R B. 2011. Magma addition and flux calculations of incrementally constructed magma chambers in continental margin arcs: Combined field, geochronologic, and thermal modeling studies. Geosphere, 7: 1439–1468

    Article  Google Scholar 

  • Pearce J A, Bender J F, De Long S E, Kidd W S F, Low P J, Güner Y, Saroglu F, Yilmaz Y, Moorbath S, Mitchell J G. 1990. Genesis of collision volcanism in Eastern Anatolia, Turkey. J Volcanol Geothermal Res, 44: 189–229

    Article  Google Scholar 

  • Pearce J A, Stern R J. 2006. The origin of back-arc basin magmas: Trace element and isotope perspectives. In: Christie D M, Fisher C R, Lee S M, Givens S, eds. Back-Arc Spreading Systems: Geological, Biological, Chemical and Physical Interactions. American Geophysical Union, Geophysical Monograph 166. 63–86

  • Pearce J A, Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci, 23: 251–285

    Article  Google Scholar 

  • Penniston-Dorland S C, Kohn M J, Manning C E. 2015. The global range of subduction zone thermal structures from exhumed blueschists and eclogites: Rocks are hotter than models. Earth Planet Sci Lett, 428: 243–254

    Article  Google Scholar 

  • Percival J A, Bleeker W, Cook F A, Rivers T, Ross G, van Staal C R. 2004a. Pan LITHOPROBE workshop IV: Intra-orogen correlations and comparative orogenic anatomy. Geosci Can, 31: 23–39

    Google Scholar 

  • Percival J A, McNicoll V, Brown J L, Whalen J B. 2004. Convergent margin tectonics, central Wabigoon Subprovince, Superior Province, Canada. Precambrian Res, 132: 213–244

    Article  Google Scholar 

  • Percival J A, Skulski T, Sanborn-Barrie M, Stott G M, Leclair A D, Corkery M T, Boily M. 2012. Geology and tectonic evolution of the Superior Province, Canada. In: Percival J A, Cook F A, Clowes R M, eds. Tectonic Styles in Canada: The Lithoprobe Perspective. Geol Assoc Can Spec Pap 49. 321–378

  • Petterson M G. 2010. A review of the geology and tectonics of the Kohistan island arc, north Pakistan. Geol Soc Lond Spec Publ, 338: 287–327

    Article  Google Scholar 

  • Pfiffner O, Gonzalez L. 2013. Mesozoic-Cenozoic Evolution of the Western Margin of South America: Case Study of the Peruvian Andes. Geosciences, 3: 262–310

    Article  Google Scholar 

  • Pitcher W S. 1993. The Nature and Origin of Granite. London: Blackie Academic & Professional. 321

  • Polat A, Appel P W U, Fryer B, Windley B, Frei R, Samson I M, Huang H. 2009. Trace element systematics of the Neoarchean Fiskenæsset anorthosite complex and associated meta-volcanic rocks, SW Greenland: Evidence for a magmatic arc origin. Precambrian Res, 175: 87–115

    Article  Google Scholar 

  • Polat A, Frei R, Scherstén A, Appel P W U. 2010. New age (ca. 2970 Ma), mantle source composition and geodynamic constraints on the Archean Fiskenæsset anorthosite complex, SW Greenland. Chem Geol, 277: 1–20

    Article  Google Scholar 

  • Polat A, Kerrich R. 2000. Archean greenstone belt magmatism and the continental growth-mantle evolution connection: Constraints from ThU-Nb-LREE systematics of the 2.7 Ga Wawa subprovince, Superior Province, Canada. Earth Planet Sci Lett, 175: 41–54

    Article  Google Scholar 

  • Polat A, Longstaffe F J, Frei R. 2018. An overview of anorthosite-bearing layered intrusions in the Archaean craton of southern West Greenland and the Superior Province of Canada: Implications for Archaean tectonics and the origin of megacrystic plagioclase. Geodinamica Acta, 30: 84–99

    Article  Google Scholar 

  • Polat A, Wang L, Appel P W U. 2015. A review of structural patterns and melting processes in the Archean craton of West Greenland: Evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models. Tectonophysics, 662: 67–94

    Article  Google Scholar 

  • Polat A. 2012. Growth of Archean continental crust in oceanic island arcs. Geology, 40: 383–384

    Article  Google Scholar 

  • Prodehl C, Mooney W D. 2012. Exploring the Earth’s crust: History of results of controlled source seismology. Geol Soc Am Mem 208. 764

    Google Scholar 

  • Pubellier M, Bader A G, Rangin C, Deffontaines B, Quebral R. 1999. Upper plate deformation induced by subduction of a volcanic arc: The Snellius Plateau (Molucca Sea, Indonesia and Mindanao, Philippines). Tectonophysics, 304: 345–368

    Article  Google Scholar 

  • Mohan M R, Satyanarayanan M, Santosh M, Sylvester P J, Tubrett M, Lam R. 2013. Neoarchean suprasubduction zone arc magmatism in southern India: Geochemistry, zircon U-Pb geochronology and Hf isotopes of the Sittampundi Anorthosite Complex. Gondwana Res, 23: 539–557

    Article  Google Scholar 

  • Ramos V A. 2008. The basement of the Central Andes: The Arequipa and related terranes. Annu Rev Earth Planet Sci, 36: 289–324

    Article  Google Scholar 

  • Rapp R P, Shimizu N, Norman M D, Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chem Geol, 160: 335–356

    Article  Google Scholar 

  • Reagan M K, Ishizuka O, Stern R J, Kelley K A, Ohara Y, Blichert-Toft J, Bloomer S H, Cash J, Fryer P, Hanan B B, Hickey-Vargas R, Ishii T, Kimura J I, Peate D W, Rowe M C, Woods M. 2010. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochem Geophys Geosyst, 11: Q03X12

    Article  Google Scholar 

  • Reagan M K, McClelland W C, Girard G, Goff K R, Peate D W, Ohara Y, Stern R J. 2013. The geology of the southern Mariana fore-arc crust: Implications for the scale of Eocene volcanism in the western Pacific. Earth Planet Sci Lett, 380: 41–51

    Article  Google Scholar 

  • Reagan M K, Pearce J A, Petronotis K, Almeev R R, Avery A J, Carvallo C, Chapman T, Christeson G L, Ferré E C, Godard M, Heaton D E, Kirchenbaur M, Kurz W, Kutterolf S, Li H, Li Y, Michibayashi K, Morgan S, Nelson W R, Prytulak J, Python M, Robertson A H F, Ryan J G, Sager W W, Sakuyama T, Shervais J W, Shimizu K, Whattam S A. 2017. Subduction initiation and ophiolite crust: New insights from IODP drilling. Int Geol Rev, 59: 1439–1450

    Article  Google Scholar 

  • Ribeiro J M, Maury R C, Grégoire M. 2016. Are adakites slab melts or high-pressure fractionated mantle melts? J Petrol, 57: 839–862

    Article  Google Scholar 

  • Richardson S H, Shirey S B, Harris J W, Carlson R W. 2001. Archean subduction recorded by Re-Os isotopes in eclogitic sulfide inclusions in Kimberley diamonds. Earth Planet Sci Lett, 191: 257–266

    Article  Google Scholar 

  • Ringuette L, Martignole J, Windley B F. 1999. Magmatic crystallization, isobaric cooling, and decompression of the garnet-bearing assemblages of the Jijal sequence (Kohistan terrane, western Himalayas). Geology, 27: 139

    Article  Google Scholar 

  • Robinson P, Thompson J B, Jr Rosenfeld J L. 1979. Nappes, gneiss domes, and regional metamorphism in western New Hampshire and central Massachusetts. In: Skehan J W, Osberg P H, eds. The Caledonides in the U.S.A.: Geological Excursions in the Northeast Appalachians. International Geological Correlation Program Project 2T, Caledonide Orogen, Weston Observatory, Weston, Massachusetts. 93–125

  • Robinson P, Thompson P J, Elbert D C. 1991. The nappe theory in the Connecticut Valley region: Thirty-five years since Jim Thompson’s first proposal. Amer Mineral, 76. 689–712

    Google Scholar 

  • Robinson P, Tucker R D, Bradley D, Berry IV H N, Osberg P H. 1998. Paleozoic orogens in New England, USA. GFF, 120: 119–148

    Article  Google Scholar 

  • Robinson P, Tucker R D, Gromet L P, Ashenden D O, Williams M L, Reed R C, Peterson V L. 1992. The Pelham dome, central Massachusetts: Stratigraphy, geochronology, and Acadian and Pennsylvanian structure and metamorphism. In: Robinson P, Brady J B, eds. Guidebook for Field Trips in the Connecticut Valley Region of Massachusetts and Adjacent States, Volume 1. Amherst: University of Massachusetts Department of Geology and Geography. 132–169

  • Rosenthal A, Yaxley G M, Green D H, Hermann J, Kovács I, Spandler C. 2015. Continuous eclogite melting and variable refertilisation in up-welling heterogeneous mantle. Sci Rep, 4: 6099

    Article  Google Scholar 

  • Rowley D B, Kidd W S F. 1981. Stratigraphic relationships and detrital composition of the medial Ordovician flysch of western New England: Implications for the tectonic evolution of the Taconic orogeny. J Geol, 89: 199–218

    Article  Google Scholar 

  • Rudnick R A, Gao S. 2003. Composition of the continental crust. In: Rudnick R L, Turekian K K, eds. Treatise on Geochemistry 3. Amsterdam: Elsevier. 1–64

  • Rudnick R L. 1995. Making continental crust. Nature, 378: 571–578

    Article  Google Scholar 

  • Sajeev K, Windley B F, Connolly J A D, Kon Y. 2009. Retrogressed eclogite (20 kbar, 1020°C) from the Neoproterozoic Palghat-Cauvery suture zone, southern India. Precambrian Res, 171: 23–36

    Article  Google Scholar 

  • Saleeby J, Ducea M, Clemens-Knott D. 2003. Production and loss of high-density batholithic root, southern Sierra Nevada, California. Tectonics, 22: 1064

    Article  Google Scholar 

  • Saleeby J B. 1983. Accretionary tectonics of the North American Cordillera. Annu Rev Earth Planet Sci, 11: 45–73

    Article  Google Scholar 

  • Saleeby J B. 1990. Progress in tectonic and petrogenetic studies in an exposed cross section of young (∼100 Ma) continental crust, southern Sierra Nevada, California. In: Salisbury M H, ed. Exposed Cross Sections of the Continental Crust. Dordrecht: Academic Press. 132–158

    Google Scholar 

  • Sawada H, Isozaki Y, Sakata S, Hirata T, Maruyama S. 2018. Secular change in lifetime of granitic crust and the continental growth: A new view from detrital zircon ages of sandstones. Geosci Front, 9: 1099–1115

    Article  Google Scholar 

  • Sawada H, Sawaki Y, Sakata S, Ishikawa A, Muteta B, Isozaki Y, Maruyama S. 2021. New geochronological constraints on the middle Archean Shurugwi greenstone belt toward an understanding of the crustal evolution of the Zimbabwe Craton. J African Earth Sci, 173: 104021

    Article  Google Scholar 

  • Scholl D W, Vallier T L, Maung T U. 1985. Introduction. In: Scholl D W, Vallier T L, eds. Geology and Offshore Resources of the Pacific Island Arcs-Tonga Region. Circum-Pacific Council for Energy and Mineral Resources. Earth Science Series 2. 3–15

  • Scholl D W, von Huene R. 2007. Crustal recycling at modern subduction zones applied to the past—Issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction. In: Hatcher R D, Carlson Jr M P, McBride J H, Martínez Catalán J R, eds. 4-D Framework of Continental Crust. Geological Society of America Memoir 200. 9–3

  • Şengör A M C, Lom N, Zabcı C, Sunal G, Öner T. 2021. The Saharides: Turkic-type orogeny in Afro-Arabia. Int J Earth Sci-Geol Rund, https://doi.org/10.1007/s00531-021-02063-3

  • Şengör A M C, Natal’in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364: 299–307

    Article  Google Scholar 

  • Şengör A M C, Natal’In B A. 1996. Turkic-type orogeny and its role in the making of the continental crust. Annu Rev Earth Planet Sci, 24: 263–337

    Article  Google Scholar 

  • Şengör A M C, Sunal G, Natal’in B A, van der Voo R. 2022. The Altaids: A review of twenty-five years of knowledge accumulation. Earth-Sci Rev, 228: 104013

    Article  Google Scholar 

  • Şengör A M C. 1996. Tectonics of Asia: A synthesis. In: Yin A, Harrison T M. The Tectonic Evolution of Asia. Cambridge: Cambridge University Press

    Google Scholar 

  • Shervais J W. 2001. Birth, death, and resurrection: The life cycle of suprasubduction zone ophiolites. Geochem Geophys Geosyst, 2: 1010–45

    Article  Google Scholar 

  • Shirey S B, Richardson S H. 2011. Start of the Wilson Cycle at 3 Ga shown by diamonds from subcontinental mantle. Science, 333: 434–436

    Article  Google Scholar 

  • Sisson V B, Poole A R, Harris N R, Cooper Burner H, Pavlis T L, Copeland P, Donelick R A, McLelland W C. 2003. Geochemical and geochronologic constraints for genesis of a tonalite-trondhjemite suite and associated malic intrusive rocks in the eastern Chugach Mountains, Alaska: A record of ridge-transform subduction. In: Sisson V B, Roeske S M, Pavlis T L eds. Geology of a Transpressional Orogen Developed during Ridge-Trench Interaction along the North Pacific margin. Boulder, Colorado, Geol Soc Am Spec Pap 371. 293–326

  • Sleep N H, Windley B F. 1982. Archean Plate Tectonics: Constraints and Inferences. J Geol, 90: 363–379

    Article  Google Scholar 

  • Sleep N H. 2000. Evolution of the mode of convection within terrestrial planets. J Geophys Res, 105: 17563–17578

    Article  Google Scholar 

  • Sol S, Thomson C J, Kendall J M, White D, Van Decar J C, Asudeh I. 2002. Seismic tomographic images of the cratonic upper mantle beneath the Western Superior Province of the Canadian Shield—A remnant Archean slab? Phys Earth Planet Inter, 134: 53–69

    Article  Google Scholar 

  • Soleimani M, Faghih A, Kusky T. 2021. Mesozoic compressional to extensional tectonics in the Central East Iranian Microcontinent: Evidence from the Boneh Shurow Metamorphic Core Complex. J Geol Soc, 178: jgs2020-123-123

    Article  Google Scholar 

  • Solomatov V. 2015. Magma oceans and primordial mantle differentiation. In: Treatise on Geophysics, 2nd ed. The Netherlands. Amsterdam: Elsevier. 81–104

    Chapter  Google Scholar 

  • Sotiriou P, Polat A, Windley B F, Kusky T. 2022. Temporal variations in the incompatible trace element systematics of Archean volcanic rocks: Implications for tectonic processes in the early Earth. Precambrian Res, 368: 106487

    Article  Google Scholar 

  • Sotiriou P, Polat A. 2020. Comparisons between Tethyan anorthosite-bearing ophiolites and Archean anorthosite-bearing layered intrusions: Implications for Archean geodynamic processes. Tectonics, 39: e06096

    Article  Google Scholar 

  • Stanley R S, Ratcliffe N M. 1985. Tectonic synthesis of the Taconian orogeny in western New England. Geol Soc Am Bull, 96: 1227–1250

    Article  Google Scholar 

  • Stern R J, Gerya T. 2018. Subduction initiation in nature and models: A review. Tectonophysics, 746: 173–198

    Article  Google Scholar 

  • Stern R J, Reagan M, Ishizuka O, Ohara Y, Whattam S. 2012. To understand subduction initiation, study forearc crust: To understand forearc crust, study ophiolites. Lithosphere, 4: 469–483

    Article  Google Scholar 

  • Stern R J. 2002. Subduction zones. Rev Geophys, 40: 3-1–3-38

    Article  Google Scholar 

  • Stern R. 2004. Subduction initiation: Spontaneous and induced. Earth Planet Sci Lett, 226: 275–292

    Article  Google Scholar 

  • Stern R J. 2010. The anatomy and ontogeny of modern intra-oceanic arc systems. Geol Soc Lond Spec Publ, 338: 7–34

    Article  Google Scholar 

  • Stevens R K. 1970. Cambro-Ordovician flysch sedimentation and tectonics in western Newfoundland and their possible bearing on a proto-Atlantic. Geol Assoc Can Spec Pap 7. 165–178

    Google Scholar 

  • Stowe C W. 1971. Summary of the tectonic development of the Rhodesian Archaean craton. Geol Soc Aust Spec Publ, 3: 377–383

    Google Scholar 

  • Stowe C W. 1974. Alpine-type structures in the Rhodesian basement complex at Selukwe. J Geol Soc, 130: 411–425

    Article  Google Scholar 

  • Straub S M, Gómez-Tuena A, Vannucchi P. 2020. Subduction erosion and arc volcanism. Nat Rev Earth Environ, 1: 574–589

    Article  Google Scholar 

  • Straub S M, Zellmer G F, Gomez-Tuena A, Espinasa-Perena R, Martin-del Pozzo A L, Stuart F M, Langmuir C H. 2014. A genetic link between silicic slab components and calc-alkaline arc volcanism in central Mexico. Geol Soc Lond Spec Publ, 385: 31–64

    Article  Google Scholar 

  • Stuart C A, Meek U, Daczko N R, Piazolo S, Huang J X. 2018. Chemical Signatures of Melt-Rock Interaction in the Root of a Magmatic Arc. J Petrol, 59: 321–340

    Article  Google Scholar 

  • Stuart C A, Piazolo S, Daczko N R. 2016. Mass transfer in the lower crust: Evidence for incipient melt assisted flow along grain boundaries in the deep arc granulites of Fiordland, New Zealand. Geochem Geophys Geosyst, 17: 3733–3753

    Article  Google Scholar 

  • Subramaniam A P. 1956. Mineralogy and petrology of the Sittampundi complex, Salem district, India. GSA Bull, 67: 317

    Article  Google Scholar 

  • Suyehiro K, Takahashi N, Ariie Y, Yokoi Y, Hino R, Shinohara M, Kanazawa T, Hirata N, Tokuyama H, Taira A. 1996. Continental crust, crustal underplating, and low-Q upper mantle beneath an oceanic island arc. Science, 272: 390–392

    Article  Google Scholar 

  • Takahashi N, Kodaira S, Tatsumi Y, Kaneda Y, Suyehiro K. 2008. Structure and growth of the Izu-Bonin-Mariana arc crust: 1. Seismic constraint on crust and mantle structure of the Mariana arc-back-arc system. J Geophys Res, 113: B01104

    Google Scholar 

  • Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications

    Google Scholar 

  • Taylor S R, McLennan S M, Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust. Rev Geophys, 33: 241–265

    Article  Google Scholar 

  • Tang M, Lee C T A, Chen K, Erdman M, Costin G, Jiang H. 2019. Nb/Ta systematics in arc magma differentiation and the role of arclogites in continent formation. Nat Commun, 10: 235

    Article  Google Scholar 

  • Tatsumi Y, Shukuno H, Tani K, Takahashi N, Kodaira S, Kogiso T. 2008. Structure and growth of the Izu-Bonin-Mariana arc crust: 2. Role of crust-mantle transformation and the transparent Moho in arc crust evolution. J Geophys Res, 113: B02203

    Google Scholar 

  • Teng L S, Lee C T, Tsai Y B, Hsiao L Y. 2000. Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan. Geology, 28: 155

    Article  Google Scholar 

  • Thompson J B Jr, Robinson P, Clifford T N, Trask N J Jr. 1968. Nappes and gneiss domes in west-central New England. In: Zen E, White W S, eds. Studies of Appalachian Geology: Northern and Maritime. New York: John Wiley & Sons. 203–218

    Google Scholar 

  • Thompson J B Jr. 1956. Skitchewaug nappe, a major recumbent fold in the area near Claremont, New Hampshire (abstract). Bull Geol Soc Am, 67: 1826–1827

    Google Scholar 

  • Torsvik T H, van der Voo R, Doubrovine P V, Burke K, Steinberger B, Ashwal L D, Trønnes R G, Webb S J, Bull A L. 2014. Deep mantle structure as a reference frame for movements in and on the Earth. Proc Natl Acad Sci USA, 111: 8735–8740

    Article  Google Scholar 

  • Tucker R D, Robinson P. 1990. Age and setting of the Bronson Hill magmatic arc: A re-evaluation based on U-Pb zircon ages in southern New England. Geol Soc Am Bull, 102: 1404–1419

    Article  Google Scholar 

  • UNESCO. 1976. Geological World Atlas, 1:10000000. Paris: UNESCO and Commission for the Geological Map of the World

    Google Scholar 

  • Utsunomiya A, Ota T, Windley B F, Suzuki N, Uchio Y, Munekata K, Maruyama S. 2007. History of the Pacific superplume: Implications for Pacific paleogeography since the Late Proterozoic. In: Maruyama S, Yuen D A, Windley B F, eds. Superplumes: Beyond Plate Tectonics. Dordrecht: Springer. 363–408

    Chapter  Google Scholar 

  • van Hunen J, Moyen J F. 2012. Archean subduction: Fact or fiction? Annu Rev Earth Planet Sci, 40: 195–219

    Article  Google Scholar 

  • Van Kranendonk M J, Smithies R H, Griffin W L, Huston D L, Hickman A H, Champion D C, Anhaeusser C R, Pirajno F. 2015. Making it thick: A volcanic plateau origin of Palaeoarchean continental lithosphere of the Pilbara and Kaapvaal cratons. Geol Soc Lond Spec Publ, 389: 83–111

    Article  Google Scholar 

  • Vanderhaeghe O, Teyssier C. 1997. Formation of the Shuswap metamorphic core complex during late-orogenic collapse of the Canadian Cordillera: Role of ductile thinning and partial melting of the mid-to lower crust. Geodinamica Acta, 10: 41–58

    Article  Google Scholar 

  • Vignaroli G, Faccenna C, Jolivet L, Piromallo C, Rossetti F. 2008. Subduction polarity reversal at the junction between the Western Alps and the Northern Apennines, Italy. Tectonophysics, 450: 34–50

    Article  Google Scholar 

  • von Huene R, Scholl D W. 1991. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys, 29: 279–316

    Article  Google Scholar 

  • Wang L, Kusky T M, Polat A, Wang S, Jiang X, Zong K, Wang J, Deng H, Fu J. 2014. Partial melting of deeply subducted eclogite from the Sulu Orogen in China. Nat Commun, 5: 5604

    Article  Google Scholar 

  • Wang S J, Wang L, Brown M, Feng P. 2016. Multi-stage barite crystallization in partially melted UHP eclogite from the Sulu belt, China. Am Mineral, 101: 564–579

    Article  Google Scholar 

  • Wang S J, Wang L, Brown M, Johnson T E, Piccoli P M, Feng P, Wang Z L. 2020a. Petrogenesis of leucosome sheets in migmatitic UHP eclogites—Evolution from silicate-rich supercritical fluid to hydrous melt. Lithos, 360–361: 105442

    Article  Google Scholar 

  • Wang S J, Wang L, Brown M, Piccoli P M, Johnson T E, Feng P, Deng H, Kitajima K, Huang Y. 2017. Fluid generation and evolution during exhumation of deeply subducted UHP continental crust: Petrogenesis of composite granite-quartz veins in the Sulu belt, China. J Metamorph Geol, 35: 601–629

    Article  Google Scholar 

  • Wang S J, Wang L, Ding Y, Wang Z C. 2020b. Origin and Tectonic Implications of Post-Orogenic Lamprophyres in the Sulu Belt of China. J Earth Sci, 31: 1200–1215

    Article  Google Scholar 

  • Wang X L, Tang M, Moyen J F, Wang D, Kröner A, Hawkesworth C, Xia X P, Xie H Q, Anhaeusser C, Hofmann A, Li J Y, Li L S. 2022. The onset of deep recycling of supracrustal materials at the Paleo-Mesoarchean boundary. Natl Sci Rev, 9: nwab136

    Article  Google Scholar 

  • Wang Z S, Kusky T M, Capitanio F. 2018. Water transportation ability of flat-lying slabs in the mantle transition zone and implications for craton destruction. Tectonophysics, 723: 95–106

    Article  Google Scholar 

  • Wang Z S, Kusky T M, Wang L. 2022. Long-lasting viscous drainage of eclogites from the cratonic lithospheric mantle after Archean subduction stacking. Geology, 50: 583–587

    Article  Google Scholar 

  • Wang Z S, Liu Y S, Zong K, Lin J, Kusky T M. 2020. Mantle degassing related to changing redox and thermal conditions during the Precambrian supercontinent cycle. Precambrian Res, 350: 105895

    Article  Google Scholar 

  • Wang L, Wang S J, Feng P, Wang Z C, Brown M, Johnson T. 2021. Multiple genesis of fluid and melt during exhumation of deeply-subducted UHP eclogite. Acta Geologica Sin (Eng), 95: 65–67

    Article  Google Scholar 

  • Wang Z S, Kusky T M. 2019. The importance of a weak mid-lithospheric layer on the evolution of the cratonic lithosphere. Earth-Sci Rev, 190: 557–569

    Article  Google Scholar 

  • Weller O M, Copley A, Miller W G R, Palin R M, Dyck B. 2019. The relationship between mantle potential temperature and oceanic lithosphere buoyancy. Earth Planet Sci Lett, 518: 86–99

    Article  Google Scholar 

  • Whattam S A, Stern R J. 2011. The ‘subduction initiation rule’: A key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. Contrib Mineral Petrol, 162: 1031–1045

    Article  Google Scholar 

  • White D J, Musacchio G, Helmstaedt H H, Harrap R M, Thurston P C, van der Velden A, Hall K. 2003. Images of a lower-crustal oceanic slab: Direct evidence for tectonic accretion in the Archean western Superior province. Geology, 31: 997

    Article  Google Scholar 

  • Whitney D L, Teyssier C, Siddoway C S. 2004. Gneiss Domes in Orogeny. Boulder, Colorado: Geol Soc Am Spec Pap 380

    Book  Google Scholar 

  • Whitney D L, Teyssier C, Rey P, Buck W R. 2013. Continental and oceanic core complexes. GSA Bull, 125: 273–298

    Article  Google Scholar 

  • Wilson F H, Detterman R L, DuBois G D. 2015. Geologic framework of the Alaskan Peninsula, southwest Alaska, and the Alaska Peninsula Terrane. U.S. Geological Survey Bulletin 1969-B, with Plates 1, 2, and companion digital file USGS Open File Report. 99–317

  • Windley B F, Kusky T, Polat A. 2021. Onset of plate tectonics by the Eoarchean. Precambrian Res, 352: 105980

    Article  Google Scholar 

  • Windley B F. 1995. The Evolving Continents. 3rd ed. Chichester: J. Wiley

    Google Scholar 

  • Xiao W, Song D, Windley B F, Li J L, Han C M, Wan B, Zhang J, Ao S J, Zhang Z. 2020. Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: Advances and perspectives. Sci China Earth Sci, 63: 329–361

    Article  Google Scholar 

  • Xu W, Zhu D C, Wang Q, Weinberg R F, Wang R, Li S M, Zhang L L, Zhao Z D. 2019. Constructing the early Mesozoic Gangdese crust in southern Tibet by hornblende-dominated magmatic differentiation. J Petrol, 60: 515–552

    Article  Google Scholar 

  • Yin A, Harrison T M. 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annu Rev Earth Planet Sci, 28: 211–280

    Article  Google Scholar 

  • Zellmer G F, Edmonds M, Straub S M. 2015. Volatiles in subduction zone magmatism. Geol Soc Lond Spec Publ, 410: 1–17

    Article  Google Scholar 

  • Zeng Y C, Chen J L, Xu J F, Wang B D, Huang F. 2016. Sediment melting during subduction initiation: Geochronological and geochemical evidence from the Darutso high-Mg andesites within ophiolite melange, central Tibet. Geochem Geophys Geosyst, 17: 4859–4877

    Article  Google Scholar 

  • Zheng Y F, Chen R X, Xu Z, Zhang S B. 2016. The transport of water in subduction zones. Sci China Earth Sci, 59: 651–682

    Article  Google Scholar 

  • Zheng Y F, Chen Y X, Dai L Q, Zhao Z F. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Sci China Earth Sci, 58: 1045–1069

    Article  Google Scholar 

  • Zheng Y F, Gao P. 2021. The production of granitic magmas through crustal anatexis at convergent plate boundaries. Lithos, 402–403: 106232

    Article  Google Scholar 

  • Zheng Y F. 2019. Subduction zone geochemistry. Geosci Front, 10: 1223–1254

    Article  Google Scholar 

  • Zheng Y F. 2021. Convergent plate boundaries and accretionary wedges. In: Alderton D, Elias S, eds. Encyclopedia of Geology, 2nd ed. London: Academic Press. 770–787

  • Zheng Y F, Chen R X. 2017. Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins. J Asian Earth Sci, 145: 46–73

    Article  Google Scholar 

  • Zheng Y F, Chen R X. 2021. Extreme metamorphism and metamorphic facies series at convergent plate boundaries: Implications for supercontinent dynamics. Geosphere, 17: 1647–1685

    Article  Google Scholar 

  • Zheng Y F, Chen Y X, Chen R X, Dai L Q. 2022. Tectonic evolution of convergent plate margins and its geological effects. Sci China Earth Sci, 65: 1247–1276

    Article  Google Scholar 

  • Zhong Y T, Kusky T M, Wang L, Polat A, Peng Y Y, Luan Z K, Liu X Y, and W C H, Wang J P. 2021. Alpine-style nappes thrust over ancient North China continental margin demonstrate large Archean horizontal plate motions. Nat Commun, 12: 6172

    Article  Google Scholar 

  • Zhu D C, Wang Q, Chung S L, Cawood P A, Zhao Z D. 2019. Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma. In: Treloar P J, Searle M P, eds. Himalayan Tectonics: A Modern Synthesis. London: Geological Society, Special Publications. 483

    Google Scholar 

Download references

Acknowledgements

Mengwei ZHANG, Jingsong LIN, Yating ZHONG, Wenbin NING, Yaying PENG, and Bo HUANG are thanked for help drafting the figures. We specially thank Kevin BURKE (deceased) who was working with us before his death in 2018 on the section “Alkaline and carbonatitic magmatism.” Some of the words and ideas in that section are his, but we lost the chance to complete the work, so they are placed here for the next generation to continue. We also acknowledge many deep discussions (not necessarily all agreements) on subjects in this contribution with Brian WINDLEY, Celâl ŞENGÖR, John DEWEY, Walter MOONEY, Ali POLAT, Wenjiao XIAO, Mingguo ZHAI, Robert HILDEBRAND, Robert STERN, Mihai DUCEA, Cin-Ty LEE, Mike BROWN, and Tim JOHNSON. We especially thank the responsible editor and three anonymous reviewers for constructive comments that helped improve the manuscript. This work was supported by the National Natural Science Foundation of China (Grant Nos. 91755213, 41890834, 41888101, 41961144020, 42072228, and 41602234), the Chinese Ministry of Education (Grant No. BP0719022), the Chinese Academy of Sciences (Grant No. QYZDY-SSWDQC017), the MOST Special Fund (Grant No. MSF-GPMR02-3), and the Open Fund of the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan) (Grant No. GPMR201704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Kusky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusky, T., Wang, L. Growth of continental crust in intra-oceanic and continental-margin arc systems: Analogs for Archean systems. Sci. China Earth Sci. 65, 1615–1645 (2022). https://doi.org/10.1007/s11430-021-9964-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9964-1

Keywords

Navigation