Skip to main content
Log in

Effects of grain dissolution–diffusion sliding and hydro-mechanical interaction on the creep deformation of soft rocks

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The creep deformation behaviour of soft rocks is one of the most important research fields in geotechnical engineering. In this study, a theoretical model was developed to investigate the coupled effects of the grain dissolution–diffusion sliding and the hydro-mechanical interaction on the creep behaviour of soft rocks. Experimental results validated the model. The results demonstrate that the creep of soft rocks is primarily dependent on the shear stress on the sliding surface, the average thickness of the hydrated film and the amplitude of the cosinusoidal sliding surface. These three parameters can be used to describe the meso-mechanism of soft rock creep stages, i.e. the transient creep stage, steady-state creep stage, and accelerated creep stage. In addition, this study’s findings show that the chemical potential field promotes the mineral dissolution and diffusion on the grain sliding surface and changes its morphology, thereby resulting in the redistribution of stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Boioli F, Carrez P, Cordier P, Devincre B, Marquille M (2015) Modeling the creep properties of olivine by 2.5-dimensional dislocation dynamics simulations. Phys Rev B 92(1):014115

    Article  Google Scholar 

  2. Chong M, Bin H, Hongbing Z, Xingang W (2016) Triaxial rheological mechanism and creep model of mudstone under complex stress. Electron J Geotech Eng 21(6):2127–2142

    Google Scholar 

  3. Deng HF, Zhou ML, Li JL, Sun XS, Huang YL (2016) Creep degradation mechanism by water–rock interaction in the red-layer soft rock. Arab J Geosci 9(12):601

    Article  Google Scholar 

  4. Eriksson R, Schatz T (2015) Rheological properties of clay material at the solid/solution interface formed under quasi-free swelling conditions. Appl Clay Sci 108:12–18

    Article  Google Scholar 

  5. Fan QY, Yang KQ, Wang WM (2010) Study of creep mechanism of argillaceous soft rocks. Chin J Rock Mech Eng 29(8):1555–1561

    Google Scholar 

  6. Firme PALP, Roehl D, Romanel C (2016) An assessment of the creep behaviour of Brazilian salt rocks using the multi-mechanism deformation model. Acta Geotech 11(6):1–19

    Article  Google Scholar 

  7. Firme P, Brandao N, Roehl D, Romanel C (2018) Enhanced double-mechanism creep laws for salt rocks. Acta Geotech 13(6):1329–1340

    Article  Google Scholar 

  8. Gee ML, McGuiggan PM, Israelachvili JN, Homola AM (1990) Liquid to solid like transitions of molecularly thin films under shear. J Chem Phys 93(3):1895–1906

    Article  Google Scholar 

  9. Getsinger AJ, Hirth G (2014) Amphibole fabric formation during diffusion creep and the theology of shear zones. Geology 42(6):535–538

    Article  Google Scholar 

  10. Hirth G, Kohlstedt DL (2015) The stress dependence of olivine creep rate: implications for extrapolation of lab data and interpretation of recrystallized grain size. Earth Planet Sci Lett 418:20–26

    Article  Google Scholar 

  11. Jaeger JC, Cook NGW, Zimmerman RW (2007) Fundamentals of rock mechanics, 4th edn. Blackwell Publishing, Oxford, pp 268–269

    Google Scholar 

  12. Kilian R, Heilbronner R, Stünitz H (2011) Quartz grain size reduction in a granitoid rock and the transition from dislocation to diffusion creep. J Struct Geol 33(8):1265–1284

    Article  Google Scholar 

  13. Liu X (1986) Discussion of general creep equation and its experimental verification. Chin J Rock Mech Eng 5(3):245–256

    Google Scholar 

  14. Liu Z, Zhou CY, Li BT, Lu YQ, Yang X (2018) A dissolution–diffusion sliding model for soft rock grains with hydro-mechanical effect. J Rock Mech Geotech Eng 3:457–467

    Article  Google Scholar 

  15. Luo XJ, Yang WD, Li RX, Gao LP (2001) Effects of pH on the solubility of the feldspar and the development of secondary porosity. Bull Mineral Petrol Geochem 20(2):103–107

    Google Scholar 

  16. Ma G, Zhou W, Ng TT, Cheng YG, Chang XL (2015) Microscopic modeling of the creep behavior of rockfills with a delayed particle breakage model. Acta Geotech 10(4):481–496

    Article  Google Scholar 

  17. Mclaren AC (1978) Crystalline plasticity and solid state flow in metamorphic rocks. Earth Sci Rev 14(2):171–172

    Article  Google Scholar 

  18. Miyazaki T, Sueyoshi K, Hiraga T (2013) Olivine crystals align during diffusion creep of Earth’s upper mantle. Nature 502(7471):321–326

    Article  Google Scholar 

  19. Okubo S, Fukui K, Hashiba K (2008) Development of a transparent triaxial cell and observation of rock deformation in compression and creep tests. Int J Rock Mech Min Sci 45(3):351–361

    Article  Google Scholar 

  20. Pashley RM (1982) Hydration forces between mica surfacesin electrolyte solutions. Adv Colloid Interface Sci 16(1):57–62

    Article  Google Scholar 

  21. Qin DH, Qin Y, Mao T (2014) Crack initiation extension fracture of rock deformation and destruction. Electron J Geotech Eng 19(Z4):16971–16979

    Google Scholar 

  22. Raj R, Ashby MF (1971) On grain boundary sliding and diffusional creep. Metall Trans 2(4):1113–1127

    Article  Google Scholar 

  23. Ren JX, Ge XR, Yang GS (2001) CT real-time testing on damage propagation microscopic mechanism of rock under uniaxial compression. Rock Soil Mech 22(2):130–133

    Google Scholar 

  24. Renard F, Ortoleva P, Gratier JP (1997) Pressure solution in sandstones: influence of clays and dependence on temperature and stress. Tectonophys 280(3–4):257–266

    Article  Google Scholar 

  25. Rutter EH, Mainprice DH (1978) The effect of water on stress relaxation of faulted and unfaulted sandstone. Pure Appl Geophys 116:634–654

    Article  Google Scholar 

  26. Shen LF, Feng XT, Pan PZ, Zhou H (2011) Chemical kinetics dissolution mechanism of rock under stress. Rock Soil Mech 32(5):1320–1326

    Google Scholar 

  27. Takemura T, Oda M, Kirai H, Golshani A (2012) Microstructural based time-dependent failure mechanism and its relation to geological background. Int J Rock Mech Min Sci 53:76–85

    Article  Google Scholar 

  28. Tang H, Wang D, Huang R, Pei X, Chen W (2017) A new rock creep model based on variable-order fractional derivatives and continuum damage mechanics. Bull Eng Geol Env 2017:1–9

    Google Scholar 

  29. Urai JL, Spiers CJ, Hendrik JZ, Lister GS (1986) Weakening of rock salt by water during long-term creep. Nature 324:554–557

    Article  Google Scholar 

  30. Wang Z, Wong RCK (2015) Strain-dependent and stress-dependent creep model for a till subject to triaxial compression. Int J Geomech 16(3):04015084

    Article  Google Scholar 

  31. Xu T, Xu Q, Tang CA, Ranjith PG (2013) The evolution of rock failure with discontinuities due to shear creep. Acta Geotech 8(6):567–581

    Article  Google Scholar 

  32. Yang CH, Li JG (2006) Analysis of creeping mechanisms of non-uniformity soft rocks. J Min Saf Eng 23(4):476–479

    Google Scholar 

  33. Zhang Y, Shao JF, Xu WY, Jia Y, Zhao HB (2015) Creep behaviour and permeability evolution of cataclastic sandstone in triaxial rheological tests. Eur J Environ Civ Eng 19(4):496–519

    Article  Google Scholar 

  34. Zhou M, Song E (2016) A random virtual crack DEM model for creep behavior of rockfill based on the subcritical crack propagation theory. Acta Geotech 11(4):827–847

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research is supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 41472257, 41530638, 41372302), the National Key Research and Development Project (Grant Nos. 2017YFC1501201, 2017YFC0804605), the Special Fund Key Project of Applied Science and Technology Research and Development in Guangdong (Grant Nos. 2015B090925016, 2016B010124007), and the Special Support Programme for High Level Talents in Guangdong (Grant No. 2015TQ01Z344).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuiying Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhou, C., Li, B. et al. Effects of grain dissolution–diffusion sliding and hydro-mechanical interaction on the creep deformation of soft rocks. Acta Geotech. 15, 1219–1229 (2020). https://doi.org/10.1007/s11440-019-00823-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-019-00823-9

Keywords

Navigation