Skip to main content
Log in

Direct approach to quantum extensions of Fisher information

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

By manipulating classical Fisher information and employing various derivatives of density operators, and using entirely intuitive and direct methods, we introduce two families of quantum extensions of Fisher information that include those defined via the symmetric logarithmic derivative, via the right logarithmic derivative, via the Bogoliubov-Kubo-Mori derivative, as well as via the derivative in terms of commutators, as special cases. Some fundamental properties of these quantum extensions of Fisher information are investigated, a multi-parameter quantum Cramér-Rao inequality is established, and applications to characterizing quantum uncertainty are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fisher R A. Theory of statistical estimation. Proc Camb Phil Soc, 1925, 22: 700–725

    Article  MATH  Google Scholar 

  2. Cramér H. Mathematical Methods of Statistics. New Jersey: Princeton University Press, 1946

    MATH  Google Scholar 

  3. Rao C R. Information and the accuracy attainable in the estimation of statistical parameters. Bull Calcutta Math Soc, 1945, 37: 81–89

    MATH  MathSciNet  Google Scholar 

  4. Jeffreys H. An invariant form for the prior probability in estimation theory. Proc Roy Soc A, 1946, 186: 453–461

    Article  MATH  MathSciNet  Google Scholar 

  5. Cover T M, Thomas J A. Elements of Information Theory. New York: John Wiley and Sons, Inc, 1991

    MATH  Google Scholar 

  6. Stam A J. Some inequalities satisfied by the quantities of information of Fisher and Shannon. Information and Control, 1959, 2: 101–112

    Article  MATH  MathSciNet  Google Scholar 

  7. Amari S I. Differential-Geometric Methods in Statistics. Berlin: Springer-Verlag, 1985.

    Google Scholar 

  8. Chentsov N N. Statistical Decision Rules and Optimal Inferences. Moscow: Nauka, 1972

    Google Scholar 

  9. Johnson O. Information Theory and the Central Limit Theorem. London: Imperial College Press, 2004

    MATH  Google Scholar 

  10. Linnik Y A. An informational theoretic proof of the central limit theorem with Linderberg conditions. Theor Probab Appl, 1959, 4: 288–299

    Article  MathSciNet  Google Scholar 

  11. Dembo A, Cover T M, Thomas J A. Information theoretic inequalities. IEEE Trans Infor Theor, 1991, 37: 1501–1518

    Article  MATH  MathSciNet  Google Scholar 

  12. Rao C R. Statistical proofs of some matrix inequalities. Linear Algebra Appl, 2000, 321: 307–320

    Article  MATH  MathSciNet  Google Scholar 

  13. Carlen E A. Superadditivity of Fisher’s information and logarithmic Sobolev inequalities. J Funct Anal, 1991, 101: 194–211

    Article  MATH  MathSciNet  Google Scholar 

  14. Luo S L. Fisher information, kinetic energy and uncertainty relation inequalities. J Phys A, 2002, 35: 5181–5187

    Article  MATH  MathSciNet  Google Scholar 

  15. Villani C. Fisher information estimates for Boltzmann’s collision operator. J Math Pures Appl, 1998, 77: 821–837

    MATH  MathSciNet  Google Scholar 

  16. Frieden B R. Physics from Fisher Information: A Unification. Cambridge: Cambridge University Press, 1998

    Google Scholar 

  17. Hall M J W. Quantum properties of classical Fisher information. Phys Rev A, 2000, 62: 012107

    Google Scholar 

  18. Luo S L. Uncertainty relations in terms of Fisher information. Commun Theor Phys, 2001, 36: 257–258

    MATH  Google Scholar 

  19. Luo S L. Fisher information matrix of Husimi distribution. J Stat Phys, 2001, 102: 1417–1428

    Article  MATH  Google Scholar 

  20. Luo S L. Maximum Shannon entropy, minimum Fisher information, and an elementary game. Foundations of Physics, 2002, 32: 1757–1772

    Article  MathSciNet  Google Scholar 

  21. Shannon C E, Weaver W W. The Mathematical Theory of Communication. Urban: University of Illinois Press, 1949

    MATH  Google Scholar 

  22. Barndorff-Nielsen O E, Gill R D, Jupp P E. On quantum statistical inference. J R Stat Soc, Ser B, 2003, 65: 775–816

    Article  MATH  MathSciNet  Google Scholar 

  23. Gibilisco P, Isola T. Wigner-Yanase information on quantum state space: the geometric approach. J Math Phys, 2003, 44: 3752–3762

    Article  MATH  MathSciNet  Google Scholar 

  24. Gibilisco P, Isola T. A characterisation of Wigner-Yanase skew information among statistically monotone metrics. Infin Dimens Anal Quantum Probab Relat Top, 2001, 4: 553–557

    Article  MATH  MathSciNet  Google Scholar 

  25. Hasegawa H. α-divergence of the non-commutative information geometry. Rep Math Phys, 1993, 33: 87–93

    Article  MATH  MathSciNet  Google Scholar 

  26. Hasegawa H, Petz D. On the Riemannian metric of α-entropies of density matrices. Lett Math Phys, 1996, 38: 221–225

    Article  MATH  MathSciNet  Google Scholar 

  27. Helstrom C W. Quantum Detection and Estimation Theory. New York: Academic Press, 1976

    Google Scholar 

  28. Holevo A S. Probabilistic and Statistical Aspects of Quantum Theory. Amsterdam: North Holland, 1982

    MATH  Google Scholar 

  29. Luo S L. Wigner-Yanase skew information vs. quantum Fisher information. Proc Amer Math Soc, 2004, 132: 885–890

    Article  MATH  MathSciNet  Google Scholar 

  30. Luo S L, Zhang Q. On skew information. IEEE Trans Inform Theory, 2004, 50: 1778–1782

    Article  MathSciNet  Google Scholar 

  31. Petz D. Monotone metrics on matrix spaces. Linear Algebra Appl, 1996, 244: 81–96

    Article  MATH  MathSciNet  Google Scholar 

  32. Yuen H P, Lax M. Multiple-parameter quantum estimation and measurement of nonselfadjoint observations. IEEE Trans Infor Theor IT, 1973, 19: 740–750

    Article  MATH  MathSciNet  Google Scholar 

  33. Dirac P A M. The Principles of Quantum Mechanics. 3rd ed. Oxford: Clarendon Press, 1947

    MATH  Google Scholar 

  34. Petz D, Toth G. The Bogoliubov inner product in quantum statistics. Lett Math Phys, 1993, 27: 205–216

    Article  MATH  MathSciNet  Google Scholar 

  35. Wigner E P, Yanase M M. Information contents of distributions. Proc Nat Acad Sci USA, 1963, 49: 910–918

    Article  MATH  MathSciNet  Google Scholar 

  36. Lieb E H. Convex trace functions and the Wigner-Yanase-Dyson conjecture. Adv Math, 1973, 11: 267–288

    Article  MATH  MathSciNet  Google Scholar 

  37. Luo S L. Quantum uncertainty of mixed states based on skew information. Phys Rev A, 2006, 73: 022324

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luo Shunlong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, P., Luo, S. Direct approach to quantum extensions of Fisher information. Front. Math. China 2, 359–381 (2007). https://doi.org/10.1007/s11464-007-0023-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-007-0023-4

Keywords

MSC

Navigation