Skip to main content
Log in

Modulation of the electronic states of perovskite SrCrO3 thin films through protonation via low-energy hydrogen plasma implantation approaches

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Hydrogenation of transition metal oxides offers a powerful platform to tailor physical functionalities as well as for potential applications in modern electronic technologies. An ideal nondestructive and efficient hydrogen incorporation approach is important for the realistic technological applications. We demonstrate the proton injection on SrCrO3 thin films via an efficient low-energy hydrogen plasma implantation experiments, without destroying the original lattice framework. Hydrogen ions accumulate largely at the interfacial regions with amorphous character which extend about one-third of the total thickness. The HxSrCrO3 (HSCO) thin films appear like exfoliated layers which however retain the fully strained state with distorted perovskite structure. Proton doping induces the change of Cr oxidation state from Cr4+ to Cr3+ in HSCO thin films and a transition from metallic to insulating phase. Our investigations suggest an attractive platform in manipulating the electronic phases in proton-based approaches and may offer a potential peeling off strategy for nanoscale devices through low-energy hydrogen plasma implantation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Zhang and G. C. Shan, Stacking control in graphenebased materials: A promising method for fascinating physical properties, Front. Phys. 14(2), 23301 (2019)

    Article  ADS  Google Scholar 

  2. T. Chatterji, S. Rols, and U. D. Wdowik, Dynamics of the phase-change material GeTe across the structural phase transition, Front. Phys. 14(2), 23601 (2019)

    Article  ADS  Google Scholar 

  3. R. Wang, X. G. Ren, Z. Yan, L. J. Jiang, W. E. I. Sha, and G. C. Shan, Graphene based functional devices: A short review, Front. Phys. 14(1), 13603 (2019)

    Article  ADS  Google Scholar 

  4. S. Q. Luo, J. F. Wang, B. Yang, and Y. B. Yuan, Recent advances in controlling the crystallization of two-dimensional perovskites for optoelectronic device, Front. Phys. 14(5), 53401 (2019)

    Article  ADS  Google Scholar 

  5. T.-H. Han, S. Tan, J. Xue, L. Meng, J.-W. Lee, and Y. Yang, Interface and defect engineering for metal halide perovskite optoelectronic devices, Adv. Mater. 1803515 (2019)

    Google Scholar 

  6. M. R. Norman, The challenge of unconventional superconductivity, Science 332(6026), 196 (2011)

    Article  ADS  Google Scholar 

  7. M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transitions, Rev. Mod. Phys. 70(4), 1039 (1998)

    Article  ADS  Google Scholar 

  8. J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nat. Mater. 4(2), 173 (2005)

    Article  ADS  Google Scholar 

  9. H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Emergent phenomena at oxide interfaces, Nat. Mater. 11(2), 103 (2012)

    Article  ADS  Google Scholar 

  10. Y. Kobayashi, O. J. Hernandez, T. Sakaguchi, T. Yajima, T. Roisnel, Y. Tsujimoto, M. Morita, Y. Noda, Y. Mogami, A. Kitada, M. Ohkura, S. Hosokawa, Z. Li, K. Hayashi, Y. Kusano, J. Kim, N. Tsuji, A. Fujiwara, Y. Matsushita, K. Yoshimura, K. Takegoshi, M. Inoue, M. Takano, and H. Kageyama, An oxyhydride of BaTiO3 exhibiting hydride exchange and electronic conductivity, Nat. Mater. 11(6), 507 (2012)

    Article  ADS  Google Scholar 

  11. M. A. Hayward, E. J. Cussen, J. B. Claridge, M. Bieringer, M. J. Rosseinsky, C. J. Kiely, S. J. Blundell, I. M. Marshall, and F. L. Pratt, The hydride anion in an extended transition metal oxide array: LaSrCoO3H0.7, Science 295(5561), 1882 (2002)

    Article  ADS  Google Scholar 

  12. F. Denis Romero, A. Leach, J. S. Möller, F. Foronda, S. J. Blundell, and M. A. Hayward, Strontium vanadium oxide-hydrides: “Square-planar” two-electron phases, Angew. Chem. Int. Ed. 53(29), 7556 (2014)

    Article  Google Scholar 

  13. C. Tassel, Y. Goto, Y. Kuno, J. Hester, M. Green, Y. Kobayashi, and H. Kageyama, Direct synthesis of chromium perovskite oxyhydride with a high magnetictransition temperature, Angew. Chem. Int. Ed. 53(39), 10377 (2014)

    Article  Google Scholar 

  14. Y. Kobayashi, O. Hernandez, C. Tassel, and H. Kageyama, New chemistry of transition metal oxyhydrides, Sci. Technol. Adv. Mater. 18(1), 905 (2017)

    Article  Google Scholar 

  15. N. Lu, P. Zhang, Q. Zhang, R. Qiao, Q. He, H. B. Li, Y. Wang, J. Guo, D. Zhang, Z. Duan, Z. Li, M. Wang, S. Yang, M. Yan, E. Arenholz, S. Zhou, W. Yang, L. Gu, C. W. Nan, J. Wu, Y. Tokura, and P. Yu, Electric-field control of tri-state phase transformation with a selective dual-ion switch, Nature 546(7656), 124 (2017)

    Article  ADS  Google Scholar 

  16. M. Jo, H. J. Lee, C. Oh, H. Yoon, J. Y. Jo, and J. Son, Gate-induced massive and reversible phase transition of VO2 channels using solid-state proton electrolytes, Adv. Funct. Mater. 28(39), 1802003 (2018)

    Article  Google Scholar 

  17. H. Yoon, M. Choi, T. W. Lim, H. Kwon, K. Ihm, J. K. Kim, S. Y. Choi, and J. Son, Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films, Nat. Mater. 15(10), 1113 (2016)

    Article  ADS  Google Scholar 

  18. M. A. Hope, K. J. Griffith, B. Cui, F. Gao, S. E. Dutton, S. S. P. Parkin, and C. P. Grey, The role of ionic liquid breakdown in the electrochemical metallization of VO2: An NMR study of gating mechanisms and VO2 reduction, J. Am. Chem. Soc. 140(48), 16685 (2018)

    Article  Google Scholar 

  19. K. A. Smith, A. I. Savva, C. Deng, J. P. Wharry, S. Hwang, D. Su, Y. Wang, J. Gong, T. Xu, D. P. Butt, and H. Xiong, Effects of proton irradiation on structural and electrochemical charge storage properties of TiO2 nanotube electrodes for lithium-ion batteries, J. Mater. Chem. A 5(23), 11815 (2017)

    Article  Google Scholar 

  20. K. H. L. Zhang, P. V. Sushko, R. Colby, Y. Du, M. E. Bowden, and S. A. Chambers, Reversible nanostructuring of SrCrO3-d through oxidation and reduction at low temperature, Nat. Commun. 5(1), 4669 (2014)

    Article  ADS  Google Scholar 

  21. B. L. Chamberland, Preparation and properties of Sr-CrO3, Solid State Commun. 5(8), 663 (1967)

    Article  ADS  Google Scholar 

  22. J. S. Zhou, C. Q. Jin, Y. W. Long, L. X. Yang, and J. B. Goodenough, Anomalous electronic state in CaCrO3 and SrCrO3, Phys. Rev. Lett. 96(4), 046408 (2006)

    Article  ADS  Google Scholar 

  23. L. Ortega-San-Martin, A. J. Williams, J. Rodgers, J. P. Attfield, G. Heymann, and H. Huppertz, Microstrain sensitivity of orbital and electronic phase separation in Sr-CrO3, Phys. Rev. Lett. 99(25), 255701 (2007)

    Article  ADS  Google Scholar 

  24. K. H. L. Zhang, Y. Du, P. V. Sushko, M. E. Bowden, V. Shutthanandan, L. Qiao, G. Cao, Z. Gai, S. Sallis, L. Piper, and S. A. Chambers, Electronic and magnetic properties of epitaxial perovskite SrCrO3(001), J. Phys.: Condens. Matter 27(24), 245605 (2015)

    ADS  Google Scholar 

  25. H. P. Zhou, X. Ye, W. Huang, M. Q. Wu, L. N. Mao, B. Yu, S. Xu, I. Levchenko, and K. Bazaka, Wearable, flexible, disposable plasma-reduced graphene oxide stress sensors for monitoring activities in austere environments, ACS Appl. Mater. Interfaces 11(16), 15122 (2019)

    Article  Google Scholar 

  26. I. Levchenko, K. Bazaka, M. Keidar, S. Xu, and J. Fang, Hierarchical multicomponent inorganic metamaterials: Intrinsically driven self-assembly at the nanoscale, Adv. Mater. 30(2), 1702226 (2018)

    Article  Google Scholar 

  27. O. Baranov, I. Levchenko, J. M. Bell, J. W. M. Lim, S. Huang, L. Xu, B. Wang, D. U. B. Aussems, S. Xu, and K. Bazaka, From nanometre to millimetre: A range of capabilities for plasma-enabled surface functionalization and nanostructuring, Mater. Horiz. 5(5), 765 (2018)

    Article  Google Scholar 

  28. I. Levchenko, K. Bazaka, T. Belmonte, M. Keidar, and S. Xu, Advanced materials for next-generation spacecraft, Adv. Mater. 30(50), 1802201 (2018)

    Article  Google Scholar 

  29. I. Levchenko, S. Xu, G. Teel, D. Mariotti, M. L. R. Walker, and M. Keidar, Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials, Nat. Commun. 9(1), 879 (2018)

    Article  ADS  Google Scholar 

  30. I. Levchenko, M. Keidar, J. Cantrell, Y.L. Wu, H. Kuninaka, K. Bazaka, and S. Xu, Explore space using swarms of tiny satellites, Nature 562(7726), 185 (2018)

    Article  ADS  Google Scholar 

  31. H. P. Zhou, D. Y. Wei, S. Xu, S. Q. Xiao, L. X. Xu, S. Y. Huang, Y. N. Guo, S. Khan, and M. Xu, Crystalline silicon surface passivation by intrinsic silicon thin films deposited by low-frequency inductively coupled plasma, J. Appl. Phys. 112(1), 013708 (2012)

    Article  ADS  Google Scholar 

  32. M. Losurdo, P. Capezzuto, G. Bruno, and E. A. Irene, Chemistry and kinetics of the GaN formation by plasma nitridation of GaAs: An in situ real-time ellipsometric study, Phys. Rev. B 58(23), 15878 (1998)

    Article  ADS  Google Scholar 

  33. K. H. L. Zhang, Y. Du, P. V. Sushko, M. E. Bowden, V. Shutthanandan, S. Sallis, L. F. J. Piper, and S. A. Chambers, Hole-induced insulator-to-metal transition in La1-xSrxCrO3 epitaxial films, Phys. Rev. B 91(15), 155129 (2015)

    Article  ADS  Google Scholar 

  34. D. D. Sarma, K. Maiti, E. Vescovo, C. Carbone, W. Eberhardt, O. Rader, and W. Gudat, Investigation of hole-doped insulating La1-xSrxCrO3 by soft-X-ray absorption spectroscopy, Phys. Rev. B 53(20), 13369 (1996)

    Article  ADS  Google Scholar 

  35. G. van der Laan, J. Zaanen, G. A. Sawatzky, R. Karnatak, and J. M. Esteva, Comparison of X-ray absorption with X-ray photoemission of nickel dihalides and NiO, Phys. Rev. B 33(6), 4253 (1986)

    Article  ADS  Google Scholar 

  36. M. W. Haverkort, M. Zwierzycki, and O. K. Andersen, Multiplet ligand-field theory using Wannier orbitals, Phys. Rev. B 85(16), 165113 (2012)

    Article  ADS  Google Scholar 

  37. M. W. Haverkort, Quanty — a quantum many body script language, 2016

    Google Scholar 

  38. M. Wu, H. L. Xin, J. O. Wang, X. J. Li, X. B. Yuan, H. Zeng, J. C. Zheng, and H. Q. Wang, Investigation of the multiplet features of SrTiO3 in X-ray absorption spectra based on configuration interaction calculations, J. Synchrotron Radiat. 25(3), 777 (2018)

    Article  Google Scholar 

  39. M. Wu, J. C. Zheng, and H. Q. Wang, Investigation of the vanadium L23-edge X-ray absorption spectrum of SrVO3 using configuration interaction calculations: Multiplet, valence, and crystal-field effects, Phys. Rev. B 97(24), 245138 (2018)

    Article  ADS  Google Scholar 

  40. T. Saitoh, A. E. Bocquet, T. Mizokawa, and A. Fujimori, Systematic variation of the electronic structure of 3 d transition-metal compounds, Phys. Rev. B 52(11), 7934 (1995)

    Article  ADS  Google Scholar 

  41. A. E. Bocquet, T. Mizokawa, K. Morikawa, A. Fujimori, S. R. Barman, K. Maiti, D. D. Sarma, Y. Tokura, and M. Onoda, Electronic structure of early 3d-transition-metal oxides by analysis of the 2p core-level photoemission spectra, Phys. Rev. B 53(3), 1161 (1996)

    Article  ADS  Google Scholar 

  42. J. Suntivich, W. T. Hong, Y. L. Lee, J. M. Rondinelli, W. Yang, J. B. Goodenough, B. Dabrowski, J. W. Freeland, and Y. Shao-Horn, Estimating hybridization of transition metal and oxygen states in perovskites from OK-edge Xray absorption spectroscopy, J. Phys. Chem. C 118(4), 1856 (2014)

    Article  Google Scholar 

  43. X. Liu, Y. J. Wang, B. Barbiellini, H. Hafiz, S. Basak, J. Liu, T. Richardson, G. Shu, F. Chou, T. C. Weng, D. Nordlund, D. Sokaras, B. Moritz, T. P. Devereaux, R. Qiao, Y. D. Chuang, A. Bansil, Z. Hussain, and W. Yang, Why LiFePO4 is a safe battery electrode: Coulomb repulsion induced electron-state reshuffling upon lithiation, Phys. Chem. Chem. Phys. 17(39), 26369 (2015)

    Article  Google Scholar 

  44. Y. Zhou, X. Guan, H. Zhou, K. Ramadoss, S. Adam, H. Liu, S. Lee, J. Shi, D. D. Tsuchiya, M. Fong, and S. Ramanathan, Strongly correlated perovskite fuel cells, Nature 534(7606), 231 (2016)

    Article  ADS  Google Scholar 

  45. S. J. Li, Y. T. Zhou, X. Kang, D. X. Liu, L. Gu, Q. H. Zhang, J. M. Yan, and Q. Jiang, A simple and effective principle for a rational design of heterogeneous catalysts for dehydrogenation of formic acid, Adv. Mater. 31(15), 1806781 (2019)

    Article  Google Scholar 

  46. I. Abdelwahab, P. Dichtl, G. Grinblat, K. Leng, X. Chi, I. H. Park, M. P. Nielsen, R. F. Oulton, K. P. Loh, and S. A. Maier, Giant and tunable optical nonlinearity in single-crystalline 2D perovskites due to excitonic and plasma effects, Adv. Mater. 31(29), 1902685 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the valuable discussion with X. P. Yang and the provision of synchrotron radiation at NSRL. This project was funded by National Natural Science foundation of China (Grant No. 11704317) and China Postdoctoral Science Foundation (Grant No. 2016M602064). We also acknowledge the supports by the Natural Science Foundation of Shenzhen University (Grant No. 827-000198). Epitaxial film growth and characterization were supported by the U. S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Science and Engineering under award No. 10122 and was carried out at the W. R. Wiley Environmental Molecular Sciences Laboratory, a DOE User Facility sponsored by the Office of Biological and Environmental Research at PNNL, a multi-program national laboratory operated for DOE by Battelle.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanwei Huang, Kelvin H. L. Zhang or Hui-Qiong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Chen, S., Huang, C. et al. Modulation of the electronic states of perovskite SrCrO3 thin films through protonation via low-energy hydrogen plasma implantation approaches. Front. Phys. 15, 13601 (2020). https://doi.org/10.1007/s11467-019-0923-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-019-0923-2

Keywords

Navigation