Skip to main content
Log in

Error-detected three-photon hyperparallel Toffoli gate with state-selective reflection

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We present an error-detected hyperparallel Toffoli (hyper-Toffoli) gate for a three-photon system based on the interface between polarized photon and cavity-nitrogen-vacancy (NV) center system. This hyper-Toffoli gate can be used to perform double Toffoli gate operations simultaneously on both the polarization and spatial-mode degrees of freedom (DoFs) of a three-photon system with a low decoherence, shorten operation time, and less quantum resources required, in compared with those on two independent three-photon systems in one DoF only. As the imperfect cavity-NV-center interactions are transformed into the detectable failures rather than infidelity based on the heralding mechanism of detectors, a near-unit fidelity of the quantum hyper-Toffoli gate can be implemented. By recycling the procedures, the efficiency of our protocol for the hyper-Toffoli gate is improved further. Meanwhile, the evaluation of gate performance with achieved experiment parameters shows that it is feasible with current experimental technology and provides a promising building block for quantum compute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Nielsen, I. Chuang, and L. K. Grover, Quantum computation and quantum information, Am. J. Phys. 70(5), 558 (2002)

    Article  ADS  Google Scholar 

  2. L. X. Liang, Y. Y. Zheng, Y. X. Zhang, and M. Zhang, Error-detected N-photon cluster state generation based on the controlled-phase gate using a quantum dot in an optical microcavity, Front. Phys. 15(2), 21601 (2020)

    Article  ADS  Google Scholar 

  3. T. Li and G. L. Long, Quantum secure direct communication based on single-photon Bell-state measurement, New J. Phys. 22(6), 063017 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  4. Z. D. Ye, D. Pan, Z. Sun, C. G. Du, L. G. Yin, and G. L. Long, Generic security analysis framework for quantum secure direct communication, Front. Phys. 16(2), 21503 (2021)

    Article  ADS  Google Scholar 

  5. P. S. Yan, L. Zhou, W. Zhong, and Y. B. Sheng, Measurement-based entanglement purification for entangled coherent states, Front. Phys. 17(2), 21501 (2022)

    Article  ADS  Google Scholar 

  6. C. Wang, Quantum secure direct communication: Intersection of communication and cryptography, Fundam. Res. 1(1), 91 (2021)

    Article  Google Scholar 

  7. P. Wang, C. Q. Yu, Z. X. Wang, R. Y. Yuan, F. F. Du, and B. C. Ren, Hyperentanglement-assisted hyperdistillation for hyper-encoding photon system, Front. Phys. 17(3), 31501 (2022)

    Article  ADS  Google Scholar 

  8. P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Rev. 41(2), 303 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79(2), 325 (1997)

    Article  ADS  Google Scholar 

  10. M. AbuGhanem, A. H. Homid, and M. Abdel-Aty, Cavity control as a new quantum algorithms implementation treatment, Front. Phys. 13(1), 130303 (2018)

    Article  Google Scholar 

  11. X. D. Cai, D. Wu, Z. E. Su, M. C. Chen, X. L. Wang, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Entanglement-based machine learning on a quantum computer, Phys. Rev. Lett. 114(11), 110504 (2015)

    Article  ADS  Google Scholar 

  12. J. Allcock and S. Y. Zhang, Quantum machine learning, Natl. Sci. Rev. 6(1), 26 (2019)

    Article  Google Scholar 

  13. X. L. Ouyang, X. Z. Huang, Y. K. Wu, W. G. Zhang, X. Wang, H. L. Zhang, L. He, X. Y. Chang, and L. M. Duan, Experimental demonstration of quantum-enhanced machine learning in a nitrogen-vacancy-center system, Phys. Rev. A 101(1), 012307 (2020)

    Article  ADS  Google Scholar 

  14. D. R. Chong, M. Kim, J. Ahn, and H. Jeong, Machine learning identification of symmetrized base states of Rydberg atoms, Front. Phys. 17(1), 12504 (2022)

    Article  ADS  Google Scholar 

  15. W. Q. Liu and H. R. Wei, Optimal synthesis of the Fredkin gate in a multilevel system, New J. Phys. 22(6), 063026 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  16. W. Q. Liu, H. R. Wei, and L. C. Kwek, Low-cost Fredkin gate with auxiliary space, Phys. Rev. A 14(5), 054057 (2020)

    Article  Google Scholar 

  17. V. V. Shende, I. L. Markov, and S. S. Bullock, Minimal universal two-qubit controlled-NOT-based circuits, Phys. Rev. A 69(6), 062321 (2004)

    Article  ADS  Google Scholar 

  18. T. C. Ralph, K. J. Resch, and A. Gilchrist, Efficient Toffoli gates using qudits, Phys. Rev. A 75(2), 022313 (2007)

    Article  ADS  Google Scholar 

  19. I. Radu, T. P. Spiller, and W. J. Munro, Generalized Toffoli gates using qudit catalysis, Phys. Rev. A 80(1), 012313 (2009)

    Google Scholar 

  20. N. K. Yu, R. Y. Duan, and M. S. Ying, Five two-qubit gates are necessary for implementing the Toffoli gate, Phys. Rev. A 88(1), 010304 (2013)

    Article  ADS  Google Scholar 

  21. J. Fiurášek, Linear-optics quantum Toffoli and Fredkin gates, Phys. Rev. A 73(6), 062313 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Soeken, D. M. Miller, and R. Drechsler, Quantum circuits employing roots of the Pauli matrices, Phys. Rev. A 88(4), 042322 (2013)

    Article  ADS  Google Scholar 

  23. A. Fedorov, L. Steffen, M. Baur, M. P. da Silva, and A. Wallraff, Implementation of a Toffoli gate with superconducting circuits, Nature 481(7380), 170 (2012)

    Article  ADS  Google Scholar 

  24. S. E. Rasmussen, K. Groenland, R. Gerritsma, K. Schoutens, and N. T. Zinner, Single-step implementation of high-fidelity n-bit Toffoli gatess, Phys. Rev. A 101(2), 022308 (2020)

    Article  ADS  Google Scholar 

  25. S. Daraeizadeh, S. P. Premaratne, N. Khammassi, X. Song, M. Perkowski, and A. Y. Matsuura, Machine learning-based three-qubit gate design for the Toffoli gate and parity check in transmon systems, Phys. Rev. A 102(1), 012601 (2020)

    Article  ADS  Google Scholar 

  26. H. R. Wei and F. G. Deng, Compact quantum gates on electron-spin qubits assisted by diamond nitrogen vacancy centers inside cavities, Phys. Rev. A 88(4), 042323 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. H. R. Wei and F. G. Deng, Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities, Sci. Rep. 4(1), 7551 (2015)

    Article  MathSciNet  Google Scholar 

  28. H. R. Wei and F. G. Deng, Universal quantum gates on electron-spin qubits with quantum dots inside singleside optical microcavities, Opt. Express 22(1), 593 (2014)

    Article  ADS  Google Scholar 

  29. G. Z. Song, J. L. Guo, Q. Liu, H. R. Wei, and G. L. Long, Heralded quantum gates for hybrid systems via waveguide-mediated photon scattering, Phys. Rev. A 104(1), 012608 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  30. T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt, Realization of the quantum Toffoli gate with trapped ions, Phys. Rev. Lett. 102(4), 040501 (2009)

    Article  ADS  Google Scholar 

  31. D. Solenov, S. E. Economou, and T. L. Reinecke, Fast two-qubit gates for quantum computing in semiconductor quantum dots using a photonic microcavity, Phys. Rev. B 87(3), 035308 (2013)

    Article  ADS  Google Scholar 

  32. B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, Simplifying quantum logic using higher-dimensional Hilbert spaces, Nat. Phys. 5(2), 134 (2009)

    Article  Google Scholar 

  33. E. O. Kiktenko, A. S. Nikolaeva, P. Xu, G. V. Shlyapnikov, and A. K. Fedorov, Scalable quantum computing with qudits on a graph, Phys. Rev. A 101(2), 022304 (2020)

    Article  ADS  Google Scholar 

  34. T. Li and G. L. Long, Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities, Phys. Rev. A 94(2), 022343 (2016)

    Article  ADS  Google Scholar 

  35. Y. H. Han, C. Cao, L. Fan, and R. Zhang, Heralded high-fidelity quantum hyper-CNOT gates assisted by charged quantum dots inside single-sided optical micro-cavities, Opt. Express 29(13), 20045 (2021)

    Article  ADS  Google Scholar 

  36. F. F. Du and Z. R. Shi, Robust hybrid hyper-controlled-not gates assisted by an input—output process of low-Q cavities, Opt. Express 27(13), 17493 (2019)

    Article  ADS  Google Scholar 

  37. H. R. Wei and G. L. Long, Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators, Phys. Rev. A 91(3), 032324 (2015)

    Article  ADS  Google Scholar 

  38. T. J. Wang, Y. Zhang, and C. Wang, Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities, Laser Phys. Lett. 11(2), 025203 (2014)

    Article  ADS  Google Scholar 

  39. H. R. Wei, F. G. Deng, and G. L. Long, Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities, Opt. Express 24(16), 18619 (2016)

    Article  ADS  Google Scholar 

  40. S. H. Ru, Y. L. Wang, M. An, F. R. Wang, P. Zhang, and F. L. Li, Realization of a deterministic quantum Toffoli gate with a single photon, Phys. Rev. A 103(2), 022606 (2021)

    Article  ADS  Google Scholar 

  41. T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, Room-temperature coherent coupling of single spins in diamond, Nat. Phys. 2(6), 408 (2006)

    Article  Google Scholar 

  42. G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, and D. D. Awschalom, Gigahertz dynamics of a strongly driven single quantum spin, Science 326(5959), 1520 (2009)

    Article  ADS  Google Scholar 

  43. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity, Nano Lett. 10(10), 3922 (2010)

    Article  ADS  Google Scholar 

  44. J. Zhang, and D. Suter, Experimental Protection of Two-Qubit Quantum Gates against Environmental Noise by Dynamical Decoupling, Phys. Rev. Lett. 115(11), 110502 (2015)

    Article  ADS  Google Scholar 

  45. L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, High-fidelity projective readout of a solid-state spin quantum register, Nature 477(7366), 574 (2011)

    Article  ADS  Google Scholar 

  46. M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, Quantum register based on individual electronic and nuclear spin qubits in diamond, Science 316(5829), 1312 (2007)

    Article  Google Scholar 

  47. F. Shi, X. Rong, N. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R. S. Schoenfeld, W. Harneit, M. Feng, and J. Du, Room-temperature implementation of the Deutsch—Jozsa algorithm with a single electronic spin in diamond, Phys. Rev. Lett. 105(4), 040504 (2010)

    Article  ADS  Google Scholar 

  48. T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, Deco-herence-protected quantum gates for a hybrid solid-state spin register, Nature 484(7392), 82 (2012)

    Article  ADS  Google Scholar 

  49. S. Arroyo-Camejo, A. Lazariev, S. W. Hell, and G. Balasubramanian, Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin, Nat. Commun. 5(1), 4870 (2014)

    Article  ADS  Google Scholar 

  50. C. Zu, W. B. Wang, L. He, W. G. Zhang, C. Y. Dai, F. Wang, and L. M. Duan, Experimental realization of universal geometric quantum gates with solid-state spins, Nature 514(7520), 72 (2014)

    Article  ADS  Google Scholar 

  51. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, Quantum entanglement between an optical photon and a solidstate spin qubit, Nature 466(7307), 730 (2010)

    Article  ADS  Google Scholar 

  52. H. Kosaka and N. Niikura, Entangled absorption of a single photon with a single spin in diamond, Phys. Rev. Lett. 114(5), 053603 (2015)

    Article  ADS  Google Scholar 

  53. H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, Heralded entanglement between solid-state qubits separated by three metres, Nature 497(7447), 86 (2013)

    Article  ADS  Google Scholar 

  54. B. C. Ren and F. G. Deng, Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities, Laser Phys. Lett. 10(11), 115201 (2013)

    Article  ADS  Google Scholar 

  55. T. J. Wang and C. Wang, Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator, Phys. Rev. A 90(5), 052310 (2014)

    Article  ADS  Google Scholar 

  56. C. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators, Opt. Express 21(16), 19252 (2013)

    Article  ADS  Google Scholar 

  57. F. F. Du, Y. T. Liu, Z. R. Shi, Y. X. Liang, J. Tang, and J. Liu, Efficient hyperentanglement purification for three-photon systems with the fidelity-robust quantum gates and hyperentanglement link, Opt. Express 27(19), 27046 (2019)

    Article  ADS  Google Scholar 

  58. Q. Chen, W. Yang, M. Feng, and J. Du, Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators, Phys. Rev. A 83(5), 054305 (2011)

    Article  ADS  Google Scholar 

  59. M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press, 1997

  60. C. Y. Hu, W. J. Munro, and J. G. Rarity, Deterministic photon entangler using a charged quantum dot inside a microcavity, Phys. Rev. B 78(12), 125318 (2008)

    Article  ADS  Google Scholar 

  61. J. H. An, M. Feng, and C. H. Oh, Quantum-information processing with a single photon by an input—output process with respect to low-Q cavities, Phys. Rev. A 79(3), 032303 (2009)

    Article  ADS  Google Scholar 

  62. B. C. Pursley, S. G. Carter, M. K. Yakes, A. S. Bracker, and D. Gammon, Picosecond pulse shaping of single photons using quantum dots, Nat. Commun. 9(1), 115 (2018)

    Article  ADS  Google Scholar 

  63. R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity, Phys. Rev. Lett. 110(24), 243602 (2013)

    Article  ADS  Google Scholar 

  64. B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Lončar, Integrated diamond networks for quantum nanophotonics, Nano Lett. 12(3), 1578 (2012)

    Article  ADS  Google Scholar 

  65. J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator, Phys. Rev. Lett. 113(2), 020503 (2014)

    Article  ADS  Google Scholar 

  66. K. M. C. Fu, C. Santori, P. E. Barclay, L. J. Rogers, N. B. Manson, and R. G. Beausoleil, Observation of the dynamic Jahn—Teller effect in the excited states of nitrogen-vacancy centers in diamond, Phys. Rev. Lett. 103(25), 256404 (2009)

    Article  ADS  Google Scholar 

  67. L. C. Bassett, F. J. Heremans, C. G. Yale, B. B. Buckley, and D. D. Awschalom, Electrical tuning of single nitrogen-vacancy center optical transitions enhanced by photoinduced fields, Phys. Rev. Lett. 107(26), 266403 (2011)

    Article  ADS  Google Scholar 

  68. P. Siyushev, H. Pinto, M. Vörös, A. Gali, F. Jelezko, and J. Wrachtrup, Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures, Phys. Rev. Lett. 110(16), 167402 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Contract 61901420, the Shanxi Province Science Foundation for Youths under Contract 201901D211235, the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi under Contract 2019L0507, and the Shanxi “1331 Project” Key Subjects Construction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Fang Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YM., Fan, G. & Du, FF. Error-detected three-photon hyperparallel Toffoli gate with state-selective reflection. Front. Phys. 17, 51502 (2022). https://doi.org/10.1007/s11467-022-1172-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1172-3

Keywords

Navigation