Skip to main content
Log in

Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies

  • Topical Review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) semiconductors are emerging as promising candidates for the next-generation nanoelectronics. As a type of unique channel materials, 2D semiconducting transition metal dichalcogenides (TMDCs), such as MoS2 and WS2, exhibit great potential for the state-of-the-art field-effect transistors owing to their atomically thin thicknesses, dangling-band free surfaces, and abundant band structures. Even so, the device performances of 2D semiconducting TMDCs are still failing to reach the theoretical values so far, which is attributed to the intrinsic defects, excessive doping, and daunting contacts between electrodes and channels. In this article, we review the up-to-date three strategies for improving the device performances of 2D semiconducting TMDCs: (i) the controllable synthesis of wafer-scale 2D semiconducting TMDCs single crystals to reduce the evolution of grain boundaries, (ii) the ingenious doping of 2D semiconducting TMDCs to modulate the band structures and suppress the impurity scatterings, and (iii) the optimization design of interfacial contacts between electrodes and channels to reduce the Schottky barrier heights and contact resistances. In the end, the challenges regarding the improvement of device performances of 2D semiconducting TMDCs are highlighted, and the further research directions are also proposed. We believe that this review is comprehensive and insightful for downscaling the electronic devices and extending the Moore’s law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Keyes, Physical limits of silicon transistors and circuits, Rep. Prog. Phys. 68(12), 2701 (2005)

    Article  ADS  Google Scholar 

  2. M. Buchanan, Generalizing Moore, Nat. Phys. 12(3), 200 (2016)

    Article  Google Scholar 

  3. S. Lloyd, Ultimate physical limits to computation, Nature 406(6799), 1047 (2000)

    Article  ADS  Google Scholar 

  4. C. Liu, H. Chen, S. Wang, Q. Liu, Y. G. Jiang, D. W. Zhang, M. Liu, and P. Zhou, Two-dimensional materials for next-generation computing technologies, Nat. Nanotechnol. 15(7), 545 (2020)

    Article  ADS  Google Scholar 

  5. M. Chhowalla, D. Jena, and H. Zhang, Two-dimensional semiconductors for transistors, Nat. Rev. Mater. 1(11), 16052 (2016)

    Article  ADS  Google Scholar 

  6. B. W. Liang, W. H. Chang, H. Y. Lin, P. C. Chen, Y. T. Zhang, K. B. Simbulan, K. S. Li, J. H. Chen, C. H. Kuan, and Y. W. Lan, High-frequency graphene base hot-electron transistor, ACS Nano 15(4), 6756 (2021)

    Article  Google Scholar 

  7. Y. Gong, Z. Q. Xu, D. Li, J. Zhang, I. Aharonovich, and Y. Zhang, Two-dimensional hexagonal boron nitride for building next-generation energy-efficient devices, ACS Energy Lett. 6(3), 985 (2021)

    Article  ADS  Google Scholar 

  8. N. R. Glavin, C. Muratore, M. L. Jespersen, J. Hu, P. T. Hagerty, A. M. Hilton, A. T. Blake, C. A. Grabowski, M. F. Durstock, M. E. McConney, D. M. Hilgefort, T. S. Fisher, and A. A. Voevodin, Amorphous boron nitride: A universal, ultrathin dielectric for 2D nanoelectronics, Adv. Funct. Mater. 26(16), 2640 (2016)

    Article  Google Scholar 

  9. J. Shi, M. Hong, Z. Zhang, Q. Ji, and Y. Zhang, Physical properties and potential applications of two-dimensional metallic transition metal dichalcogenides, Coord. Chem. Rev. 376(1), 1 (2018)

    Article  Google Scholar 

  10. P. Wang, Y. Huan, P. Yang, M. Cheng, J. Shi, and Y. Zhang, Controlled syntheses and multifunctional applications of two-dimensional metallic transition metal dichalcogenides, Acc. Mater. Res. 2(9), 751 (2021)

    Article  Google Scholar 

  11. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)

    Article  ADS  Google Scholar 

  12. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Room-temperature quantum Hall effect in graphene, Science 315(5817), 1379 (2007)

    Article  ADS  Google Scholar 

  13. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Approaching ballistic transport in suspended graphene, Nat. Nanotechnol. 3(8), 491 (2008)

    Article  ADS  Google Scholar 

  14. H. Seol Jae, I. Jo, L. Moore Arden, L. Lindsay, H. Aitken Zachary, T. Pettes Michael, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, S. R. Rodney, and L. Shi, Two-dimensional phonon transport in supported graphene, Science 328(5975), 213 (2010)

    Article  ADS  Google Scholar 

  15. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science 320(5881), 1308 (2008)

    Article  ADS  Google Scholar 

  16. L. Ju, M. Bie, X. Zhang, X. Chen, and L. Kou, Two-dimensional Janus van der Waals heterojunctions: A review of recent research progresses, Front. Phys. 16(1), 13201 (2021)

    Article  ADS  Google Scholar 

  17. D. Akinwande, C. Huyghebaert, C. H. Wang, M. I. Serna, S. Goossens, L. J. Li, H. S. P. Wong, and F. H. L. Koppens, Graphene and two-dimensional materials for silicon technology, Nature 573(7775), 507 (2019)

    Article  ADS  Google Scholar 

  18. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)

    Article  ADS  Google Scholar 

  19. C. Tan, Z. Lai, and H. Zhang, Ultrathin two-dimensional multinary layered metal chalcogenide nanomaterials, Adv. Mater. 29(37), 1701392 (2017)

    Article  Google Scholar 

  20. C. Tan, X. Cao, X. J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G. H. Nam, M. Sindoro, and H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials, Chem. Rev. 117(9), 6225 (2017)

    Article  Google Scholar 

  21. Y. Liu, X. Duan, H. J. Shin, S. Park, Y. Huang, and X. Duan, Promises and prospects of two-dimensional transistors, Nature 591(7848), 43 (2021)

    Article  ADS  Google Scholar 

  22. X. Jing, Y. Illarionov, E. Yalon, P. Zhou, T. Grasser, Y. Shi, and M. Lanza, Engineering field effect transistors with 2D semiconducting channels: Status and prospects, Adv. Funct. Mater. 30(18), 1901971 (2020)

    Article  Google Scholar 

  23. Q. Zeng, H. Wang, W. Fu, Y. Gong, W. Zhou, P. M. Ajayan, J. Lou, and Z. Liu, Band engineering for novel two-dimensional atomic layers, Small 11(16), 1868 (2015)

    Article  Google Scholar 

  24. X. Bao, Q. Ou, Z. Q. Xu, Y. Zhang, Q. Bao, and H. Zhang, Band structure engineering in 2D materials for optoelectronic applications, Adv. Mater. Technol. 3(11), 1800072 (2018)

    Article  Google Scholar 

  25. X. Cui, G. H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C. H. Lee, D. A. Chenet, X. Zhang, L. Wang, F. Ye, F. Pizzocchero, B. S. Jessen, K. Watanabe, T. Taniguchi, D. A. Muller, T. Low, P. Kim, and J. Hone, Multiterminal transport measurements of MoS2 using a van der Waals heterostructure device platform, Nat. Nanotechnol. 10(6), 534 (2015)

    Article  ADS  Google Scholar 

  26. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)

    Article  ADS  Google Scholar 

  27. R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, Phase-engineered low-resistance contacts for ultrathin MoS2 transistors, Nat. Mater. 13(12), 1128 (2014)

    Article  ADS  Google Scholar 

  28. Y. Liu, J. Guo, Y. Wu, E. Zhu, N. O. Weiss, Q. He, H. Wu, H. C. Cheng, Y. Xu, I. Shakir, Y. Huang, and X. Duan, Pushing the performance limit of sub-100 nm molybdenum disulfide transistors, Nano Lett. 16(10), 6337 (2016)

    Article  ADS  Google Scholar 

  29. Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, and W. Chen, Two-dimensional transition metal dichalcogenides: Interface and defect engineering, Chem. Soc. Rev. 47(9), 3100 (2018)

    Article  Google Scholar 

  30. S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. I. Yakobson, J. C. Idrobo, P. M. Ajayan, and J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers, Nat. Mater. 12(8), 754 (2013)

    Article  ADS  Google Scholar 

  31. D. Rhodes, S. H. Chae, R. Ribeiro-Palau, and J. Hone, Disorder in van der Waals heterostructures of 2D materials, Nat. Mater. 18(6), 541 (2019)

    Article  ADS  Google Scholar 

  32. H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S. Yuan, F. Miao, F. Song, G. Long, Y. Shi, L. Sun, J. Wang, and X. Wang, Hopping transport through defect-induced localized states in molybdenum disulphide, Nat. Commun. 4(1), 2642 (2013)

    Article  ADS  Google Scholar 

  33. S. H. Ryu, M. Huh, D. Y. Park, C. Jozwiak, E. Rotenberg, A. Bostwick, and K. S. Kim, Pseudogap in a crystalline insulator doped by disordered metals, Nature 596(7870), 68 (2021)

    Article  ADS  Google Scholar 

  34. J. Suh, T. L. Tan, W. Zhao, J. Park, D. Y. Lin, T. E. Park, J. Kim, C. Jin, N. Saigal, S. Ghosh, Z. M. Wong, Y. Chen, F. Wang, W. Walukiewicz, G. Eda, and J. Wu, Reconfiguring crystal and electronic structures of MoS2 by substitutional doping, Nat. Commun. 9(1), 199 (2018)

    Article  ADS  Google Scholar 

  35. V. Kochat, A. Apte, J. A. Hachtel, H. Kumazoe, A. Krishnamoorthy, S. Susarla, J. C. Idrobo, F. Shimojo, P. Vashishta, R. Kalia, A. Nakano, C. S. Tiwary, and P. M. Ajayan, Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism, Adv. Mater. 29(43), 1703754 (2017)

    Article  Google Scholar 

  36. S. Fu, K. Kang, K. Shayan, A. Yoshimura, S. Dadras, X. Wang, L. Zhang, S. Chen, N. Liu, A. Jindal, X. Li, A. N. Pasupathy, A. N. Vamivakas, V. Meunier, S. Strauf, and E. H. Yang, Enabling room temperature ferromagnetism in monolayer MoS2 via in situ iron-doping, Nat. Commun. 11(1), 2034 (2020)

    Article  ADS  Google Scholar 

  37. S. M. Hus, R. Ge, P. A. Chen, L. Liang, G. E. Donnelly, W. Ko, F. Huang, M. H. Chiang, A. P. Li, and D. Akinwande, Observation of single-defect memristor in an MoS2 atomic sheet, Nat. Nanotechnol. 16(1), 58 (2021)

    Article  ADS  Google Scholar 

  38. S. Wang, A. Robertson, and J. H. Warner, Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides, Chem. Soc. Rev. 47(17), 6764 (2018)

    Article  Google Scholar 

  39. J. Y. Noh, H. Kim, M. Park, and Y. S. Kim, Deep-to-shallow level transition of Re and Nb dopants in monolayer MoS2 with dielectric environments, Phys. Rev. B 92(11), 115431 (2015)

    Article  ADS  Google Scholar 

  40. S. Chen, S. Wang, C. Wang, Z. Wang, and Q. Liu, Latest advance on seamless metal-semiconductor contact with ultralow Schottky barrier in 2D-material-based devices, Nano Today 42, 101372 (2022)

    Article  Google Scholar 

  41. Y. Wang and M. Chhowalla, Making clean electrical contacts on 2D transition metal dichalcogenides, Nat. Rev. Phys. 4(2), 101 (2022)

    Article  Google Scholar 

  42. X. Zhang, B. Liu, L. Gao, H. Yu, X. Liu, J. Du, J. Xiao, Y. Liu, L. Gu, Q. Liao, Z. Kang, Z. Zhang, and Y. Zhang, Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions, Nat. Commun. 12(1), 1522 (2021)

    Article  ADS  Google Scholar 

  43. X. Zheng, A. Calò, E. Albisetti, X. Liu, A. S. M. Alharbi, G. Arefe, X. Liu, M. Spieser, W. J. Yoo, T. Taniguchi, K. Watanabe, C. Aruta, A. Ciarrocchi, A. Kis, B. S. Lee, M. Lipson, J. Hone, D. Shahrjerdi, and E. Riedo, Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography, Nat. Electron. 2(1), 17 (2019)

    Article  Google Scholar 

  44. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, 2D transition metal dichalcogenides, Nat. Rev. Mater. 2(8), 17033 (2017)

    Article  ADS  Google Scholar 

  45. Y. Liu, N. O. Weiss, X. Duan, H. C. Cheng, Y. Huang, and X. Duan, Van der Waals heterostructures and devices, Nat. Rev. Mater. 1(9), 16042 (2016)

    Article  ADS  Google Scholar 

  46. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, Electronics based on two-dimensional materials, Nat. Nanotechnol. 9(10), 768 (2014)

    Article  ADS  Google Scholar 

  47. A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. M. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide, Nat. Mater. 12(6), 554 (2013)

    Article  ADS  Google Scholar 

  48. T. H. Ly, D. J. Perello, J. Zhao, Q. M. Deng, H. Kim, G. H. Han, S. H. Chae, H. Y. Jeong, and Y. H. Lee, Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries, Nat. Commun. 7(1), 10426 (2016)

    Article  ADS  Google Scholar 

  49. H. G. Ji, Y. C. Lin, K. Nagashio, M. Maruyama, P. Solís-Fernández, A. Sukma Aji, V. Panchal, S. Okada, K. Suenaga, and H. Ago, Hydrogen-assisted epitaxial growth of monolayer tungsten disulfide and seamless grain stitching, Chem. Mater. 30(2), 403 (2018)

    Article  Google Scholar 

  50. T. Wu, X. Zhang, Q. Yuan, J. Xue, G. Lu, Z. Liu, H. Wang, H. Wang, F. Ding, Q. Yu, X. Xie, and M. Jiang, Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys, Nat. Mater. 15(1), 43 (2016)

    Article  ADS  Google Scholar 

  51. J. H. Lee, E. K. Lee, W. J. Joo, Y. Jang, B. S. Kim, J. Y. Lim, S. H. Choi, S. J. Ahn, J. R. Ahn, M. H. Park, C. W. Yang, B. L. Choi, S. W. Hwang, and D. Whang, Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium, Science 344(6181), 286 (2014)

    Article  ADS  Google Scholar 

  52. M. Huang, P. V. Bakharev, Z. J. Wang, M. Biswal, Z. Yang, S. Jin, B. Wang, H. J. Park, Y. Li, D. Qu, Y. Kwon, X. Chen, S. H. Lee, M. G. Willinger, W. J. Yoo, Z. Lee, and R. S. Ruoff, Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil, Nat. Nanotechnol. 15(4), 289 (2020)

    Article  ADS  Google Scholar 

  53. M. Wang, M. Huang, D. Luo, Y. Li, M. Choe, W. K. Seong, M. Kim, S. Jin, M. Wang, S. Chatterjee, Y. Kwon, Z. Lee, and R. S. Ruoff, Single-crystal, large-area, fold-free monolayer graphene, Nature 596(7873), 519 (2021)

    Article  ADS  Google Scholar 

  54. J. S. Lee, S. H. Choi, S. J. Yun, Y. I. Kim, S. Boandoh, J. H. Park, B. G. Shin, H. Ko, S. H. Lee, Y. M. Kim, Y. H. Lee, K. K. Kim, and S. M. Kim, Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation, Science 362(6416), 817 (2018)

    Article  ADS  Google Scholar 

  55. L. Wang, X. Xu, L. Zhang, R. Qiao, M. Wu, Z. Wang, S. Zhang, J. Liang, Z. Zhang, Z. Zhang, W. Chen, X. Xie, J. Zong, Y. Shan, Y. Guo, M. Willinger, H. Wu, Q. Li, W. Wang, P. Gao, S. Wu, Y. Zhang, Y. Jiang, D. Yu, E. Wang, X. Bai, Z. J. Wang, F. Ding, and K. Liu, Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper, Nature 570(7759), 91 (2019)

    Article  ADS  Google Scholar 

  56. T. A. Chen, C. P. Chuu, C. C. Tseng, C. K. Wen, H. S. P. Wong, S. Pan, R. Li, T. A. Chao, W. C. Chueh, Y. Zhang, Q. Fu, B. I. Yakobson, W. H. Chang, and L. J. Li, Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu(111), Nature 579(7798), 219 (2020)

    Article  ADS  Google Scholar 

  57. L. Zhang, J. Dong, and F. Ding, Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis, Chem. Rev. 121(11), 6321 (2021)

    Article  Google Scholar 

  58. X. Xu, Y. Pan, S. Liu, B. Han, P. Gu, S. Li, W. Xu, Y. Peng, Z. Han, J. Chen, P. Gao, and Y. Ye, Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2, Science 372(6538), 195 (2021)

    Article  ADS  Google Scholar 

  59. S. Cho, S. Kim, J. H. Kim, J. Zhao, J. Seok, D. H. Keum, J. Baik, D. H. Choe, K. J. Chang, K. Suenaga, S. W. Kim, Y. H. Lee, and H. Yang, Phase patterning for ohmic homojunction contact in MoTe2, Science 349(6248), 625 (2015)

    Article  ADS  Google Scholar 

  60. J. H. Sung, H. Heo, S. Si, Y. H. Kim, H. R. Noh, K. Song, J. Kim, C. S. Lee, S. Y. Seo, D. H. Kim, H. K. Kim, H. W. Yeom, T. H. Kim, S. Y. Choi, J. S. Kim, and M. H. Jo, Coplanar semiconductor—metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy, Nat. Nanotechnol. 12(11), 1064 (2017)

    Article  ADS  Google Scholar 

  61. L. Chen, B. Liu, M. Ge, Y. Ma, A. N. Abbas, and C. Zhou, Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode, ACS Nano 9(8), 8368 (2015)

    Article  Google Scholar 

  62. T. Li, W. Guo, L. Ma, W. Li, Z. Yu, Z. Han, S. Gao, L. Liu, D. Fan, Z. Wang, Y. Yang, W. Lin, Z. Luo, X. Chen, N. Dai, X. Tu, D. Pan, Y. Yao, P. Wang, Y. Nie, J. Wang, Y. Shi, and X. Wang, Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire, Nat. Nanotechnol. 16(11), 1201 (2021)

    Article  ADS  Google Scholar 

  63. H. Yu, M. Liao, W. Zhao, G. Liu, X. Zhou, Z. Wei, X. Xu, K. Liu, Z. Hu, K. Deng, S. Zhou, J. A. Shi, L. Gu, C. Shen, T. Zhang, L. Du, L. Xie, J. Zhu, W. Chen, R. Yang, D. Shi, and G. Zhang, Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films, ACS Nano 11(12), 12001 (2017)

    Article  Google Scholar 

  64. K. K. H. Smithe, S. V. Suryavanshi, M. Muñoz Rojo, A. D. Tedjarati, and E. Pop, Low variability in synthetic monolayer MoS2 devices, ACS Nano 11(8), 8456 (2017)

    Article  Google Scholar 

  65. R. Dong, X. Gong, J. Yang, Y. Sun, L. Ma, and J. Wang, The intrinsic thermodynamic difficulty and a step-guided mechanism for the epitaxial growth of uniform multilayer MoS2 with controllable thickness, Adv. Mater. 34(20), 2201402 (2022)

    Article  Google Scholar 

  66. L. Liu, T. Li, L. Ma, W. Li, S. Gao, W. Sun, R. Dong, X. Zou, D. Fan, L. Shao, C. Gu, N. Dai, Z. Yu, X. Chen, X. Tu, Y. Nie, P. Wang, J. Wang, Y. Shi, and X. Wang, Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire, Nature 605(7908), 69 (2022)

    Article  ADS  Google Scholar 

  67. J. Wang, X. Xu, T. Cheng, L. Gu, R. Qiao, Z. Liang, D. Ding, H. Hong, P. Zheng, Z. Zhang, Z. Zhang, S. Zhang, G. Cui, C. Chang, C. Huang, J. Qi, J. Liang, C. Liu, Y. Zuo, G. Xue, X. Fang, J. Tian, M. Wu, Y. Guo, Z. Yao, Q. Jiao, L. Liu, P. Gao, Q. Li, R. Yang, G. Zhang, Z. Tang, D. Yu, E. Wang, J. Lu, Y. Zhao, S. Wu, F. Ding, and K. Liu, Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire, Nat. Nanotechnol. 17(1), 33 (2022)

    Article  ADS  Google Scholar 

  68. P. Yang, S. Zhang, S. Pan, B. Tang, Y. Liang, X. Zhao, Z. Zhang, J. Shi, Y. Huan, Y. Shi, S. J. Pennycook, Z. Ren, G. Zhang, Q. Chen, X. Zou, Z. Liu, and Y. Zhang, Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111), ACS Nano 14(4), 5036 (2020)

    Article  Google Scholar 

  69. A. Aljarb, Z. Cao, H. Tang, J. Huang, M. Li, W. Hu, L. Cavallo, and L. Li, Substrate lattice-guided seed formation controls the orientation of 2D transition-metal dichalcogenides, ACS Nano 11(9), 9215 (2017)

    Article  Google Scholar 

  70. M. Chubarov, T. H. Choudhury, D. R. Hickey, S. Bachu, T. Zhang, A. Sebastian, A. Bansal, H. Zhu, N. Trainor, S. Das, M. Terrones, N. Alem, and J. M. Redwing, Wafer-scale epitaxial growth of unidirectional WS2 monolayers on sapphire, ACS Nano 15(2), 2532 (2021)

    Article  Google Scholar 

  71. T. Shinada, S. Okamoto, T. Kobayashi, and I. Ohdomari, Enhancing semiconductor device performance using ordered dopant arrays, Nature 437(7062), 1128 (2005)

    Article  ADS  Google Scholar 

  72. S. Y. Seo, G. Moon, O. F. N. Okello, M. Y. Park, C. Han, S. Cha, H. Choi, H. W. Yeom, S. Y. Choi, J. Park, and M. H. Jo, Reconfigurable photo-induced doping of two-dimensional van der Waals semiconductors using different photon energies, Nat. Electron. 4(1), 38 (2021)

    Article  Google Scholar 

  73. Y. H. Chen, R. R. Tamming, K. Chen, Z. Zhang, F. Liu, Y. Zhang, J. M. Hodgkiss, R. J. Blaikie, B. Ding, and M. Qiu, Bandgap control in two-dimensional semiconductors via coherent doping of plasmonic hot electrons, Nat. Commun. 12(1), 4332 (2021)

    Article  ADS  Google Scholar 

  74. J. Zhou, H. Zhu, Q. Song, Z. Ding, J. Mao, Z. Ren, and G. Chen, Mobility enhancement in heavily doped semiconductors via electron cloaking, Nat. Commun. 13(1), 2482 (2022)

    Article  ADS  Google Scholar 

  75. B. Li, T. Xing, M. Zhong, L. Huang, N. Lei, J. Zhang, J. Li, and Z. Wei, A two-dimensional Fe-doped SnS2 magnetic semiconductor, Nat. Commun. 8(1), 1958 (2017)

    Article  ADS  Google Scholar 

  76. J. Zhou, J. Lin, H. Sims, C. Jiang, C. Cong, J. A. Brehm, Z. Zhang, L. Niu, Y. Chen, Y. Zhou, Y. Wang, F. Liu, C. Zhu, T. Yu, K. Suenaga, R. Mishra, S. T. Pantelides, Z. G. Zhu, W. Gao, Z. Liu, and W. Zhou, Synthesis of Co-doped MoS2 monolayers with enhanced valley splitting, Adv. Mater. 32(11), 1906536 (2020)

    Article  Google Scholar 

  77. Q. Li, X. Zhao, L. Deng, Z. Shi, S. Liu, Q. Wei, L. Zhang, Y. Cheng, L. Zhang, H. Lu, W. Gao, W. Huang, C. W. Qiu, G. Xiang, S. J. Pennycook, Q. Xiong, K. Loh, and B. Peng, Enhanced valley Zeeman splitting in Fe-doped monolayer MoS2, ACS Nano 14(4), 4636 (2020)

    Article  Google Scholar 

  78. K. Zhang, S. Feng, J. Wang, A. Azcatl, N. Lu, R. Addou, N. Wang, C. Zhou, J. Lerach, V. Bojan, M. J. Kim, L. Q. Chen, R. M. Wallace, M. Terrones, J. Zhu, and J. A. Robinson, Manganese doping of monolayer MoS2: The substrate is critical, Nano Lett. 15(10), 6586 (2015)

    Article  ADS  Google Scholar 

  79. H. Li, M. Cheng, P. Wang, R. Du, L. Song, J. He, and J. Shi, Reducing contact resistance and boosting device performance of monolayer MoS2 by in situ Fe doping, Adv. Mater. 34(18), 2200885 (2022)

    Article  Google Scholar 

  80. D. Lee, J. J. Lee, Y. S. Kim, Y. H. Kim, J. C. Kim, W. Huh, J. Lee, S. Park, H. Y. Jeong, Y. D. Kim, and C. H. Lee, Remote modulation doping in van der Waals heterostructure transistors, Nat. Electron. 4(9), 664 (2021)

    Article  Google Scholar 

  81. Y. Wang, J. Xiao, H. Zhu, Y. Li, Y. Alsaid, K. Y. Fong, Y. Zhou, S. Wang, W. Shi, Y. Wang, A. Zettl, E. J. Reed, and X. Zhang, Structural phase transition in monolayer MoTe2 driven by electrostatic doping, Nature 550(7677), 487 (2017)

    Article  ADS  Google Scholar 

  82. S. Song, Y. Sim, S. Y. Kim, J. H. Kim, I. Oh, W. Na, D. H. Lee, J. Wang, S. Yan, Y. Liu, J. Kwak, J. H. Chen, H. Cheong, J. W. Yoo, Z. Lee, and S. Y. Kwon, Wafer-scale production of patterned transition metal ditelluride layers for two-dimensional metal-semiconductor contacts at the Schottky—Mott limit, Nat. Electron. 3(4), 207 (2020)

    Article  Google Scholar 

  83. Y. Jung, M. S. Choi, A. Nipane, A. Borah, B. Kim, A. Zangiabadi, T. Taniguchi, K. Watanabe, W. J. Yoo, J. Hone, and J. T. Teherani, Transferred via contacts as a platform for ideal two-dimensional transistors, Nat. Electron. 2(5), 187 (2019)

    Article  Google Scholar 

  84. W. Liu, Transition metal ditellurides make for better 2D contacts, Nat. Electron. 3(4), 187 (2020)

    Article  Google Scholar 

  85. A. Allain, J. Kang, K. Banerjee, and A. Kis, Electrical contacts to two-dimensional semiconductors, Nat. Mater. 14(12), 1195 (2015)

    Article  ADS  Google Scholar 

  86. R. T. Tung, The physics and chemistry of the Schottky barrier height, Appl. Phys. Rev. 1(1), 011304 (2014)

    Article  ADS  Google Scholar 

  87. X. Liu, M. S. Choi, E. Hwang, W. J. Yoo, and J. Sun, Fermi level pinning dependent 2D semiconductor devices: Challenges and prospects, Adv. Mater. 34(15), 2108425 (2022)

    Article  Google Scholar 

  88. Y. Liu, J. Guo, E. Zhu, L. Liao, S. J. Lee, M. Ding, I. Shakir, V. Gambin, Y. Huang, and X. Duan, Approaching the Schottky—Mott limit in van der Waals metal—semiconductor junctions, Nature 557(7707), 696 (2018)

    Article  ADS  Google Scholar 

  89. G. Kwon, Y. H. Choi, H. Lee, H. S. Kim, J. Jeong, K. Jeong, M. Baik, H. Kwon, J. Ahn, E. Lee, and M. H. Cho, Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors, Nat. Electron. 5(4), 241 (2022)

    Article  Google Scholar 

  90. P. C. Shen, C. Su, Y. Lin, A. S. Chou, C. C. Cheng, J. H. Park, M. H. Chiu, A. Y. Lu, H. L. Tang, M. M. Tavakoli, G. Pitner, X. Ji, Z. Cai, N. Mao, J. Wang, V. Tung, J. Li, J. Bokor, A. Zettl, C. I. Wu, T. Palacios, L. J. Li, and J. Kong, Ultralow contact resistance between semimetal and monolayer semiconductors, Nature 593(7858), 211 (2021)

    Article  ADS  Google Scholar 

  91. J. Shi, X. Wang, S. Zhang, L. Xiao, Y. Huan, Y. Gong, Z. Zhang, Y. Li, X. Zhou, M. Hong, Q. Fang, Q. Zhang, X. Liu, L. Gu, Z. Liu, and Y. Zhang, Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst, Nat. Commun. 8(1), 958 (2017)

    Article  ADS  Google Scholar 

  92. J. Shi, X. Chen, L. Zhao, Y. Gong, M. Hong, Y. Huan, Z. Zhang, P. Yang, Y. Li, Q. Zhang, Q. Zhang, L. Gu, H. Chen, J. Wang, S. Deng, N. Xu, and Y. Zhang, Chemical vapor deposition grown wafer-scale 2D tantalum diselenide with robust charge-density-wave order, Adv. Mater. 30(44), 1804616 (2021)

    Article  Google Scholar 

  93. J. Ge, T. Luo, Z. Lin, J. Shi, Y. Liu, P. Wang, Y. Zhang, W. Duan, and J. Wang, Magnetic moments induced by atomic vacancies in transition metal dichalcogenide flakes, Adv. Mater. 33(4), 2005465 (2018)

    Article  Google Scholar 

  94. M. Bonilla, S. Kolekar, Y. Ma, H. C. Diaz, V. Kalappattil, R. Das, T. Eggers, H. R. Gutierrez, M. H. Phan, and M. Batzill, Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates, Nat. Nanotechnol. 13(4), 289 (2018)

    Article  ADS  Google Scholar 

  95. K. Zhao, H. Lin, X. Xiao, W. Huang, W. Yao, M. Yan, Y. Xing, Q. Zhang, Z. X. Li, S. Hoshino, J. Wang, S. Zhou, L. Gu, M. S. Bahramy, H. Yao, N. Nagaosa, Q. K. Xue, K. T. Law, X. Chen, and S. H. Ji, Disorder-induced multifractal superconductivity in monolayer niobium dichalcogenides, Nat. Phys. 15(9), 904 (2019)

    Article  Google Scholar 

  96. Y. Xing, P. Yang, J. Ge, J. Yan, J. Luo, H. Ji, Z. Yang, Y. Li, Z. Wang, Y. Liu, F. Yang, P. Qiu, C. Xi, M. Tian, Y. Liu, X. Lin, and J. Wang, Extrinsic and intrinsic anomalous metallic states in transition metal dichalcogenide Ising superconductors, Nano Lett. 21(18), 7486 (2021)

    Article  ADS  Google Scholar 

  97. Z. Wang, Y. Y. Sun, I. Abdelwahab, L. Cao, W. Yu, H. Ju, J. Zhu, W. Fu, L. Chu, H. Xu, and K. P. Loh, Surface-limited superconducting phase transition on 1T-TaS2, ACS Nano 12(12), 12619 (2018)

    Article  Google Scholar 

  98. J. Hall, N. Ehlen, J. Berges, E. van Loon, C. van Efferen, C. Murray, M. Rösner, J. Li, B. V. Senkovskiy, M. Hell, M. Rolf, T. Heider, M. C. Asensio, J. Avila, L. Plucinski, T. Wehling, A. Grüneis, and T. Michely, Environmental control of charge density wave order in monolayer 2H-TaS2, ACS Nano 13(9), 10210 (2019)

    Article  Google Scholar 

  99. C. Zhu, Y. Chen, F. Liu, S. Zheng, X. Li, A. Chaturvedi, J. Zhou, Q. Fu, Y. He, Q. Zeng, H. J. Fan, H. Zhang, W. J. Liu, T. Yu, and Z. Liu, Light-tunable 1T-TaS2 charge-density-wave oscillators, ACS Nano 12(11), 11203 (2018)

    Article  Google Scholar 

  100. J. Bekaert, E. Khestanova, D. G. Hopkinson, J. Birkbeck, N. Clark, M. Zhu, D. A. Bandurin, R. Gorbachev, S. Fairclough, Y. Zou, M. Hamer, D. J. Terry, J. J. P. Peters, A. M. Sanchez, B. Partoens, S. J. Haigh, M. V. Milošević, and I. V. Grigorieva, Enhanced superconductivity in few-layer TaS2 due to healing by oxygenation, Nano Lett. 20(5), 3808 (2020)

    Article  ADS  Google Scholar 

  101. Y. Chen, L. Wu, H. Xu, C. Cong, S. Li, S. Feng, H. Zhang, C. Zou, J. Shang, S. A. Yang, K. P. Loh, W. Huang, and T. Yu, Visualizing the anomalous charge density wave states in graphene/NbSe2 heterotructures, Adv. Mater. 32(45), 2003746 (2020)

    Article  Google Scholar 

  102. Q. Dong, J. Pan, S. Li, Y. Fang, T. Lin, S. Liu, B. Liu, Q. Li, F. Huang, and B. Liu, Record-high superconductivity in transition metal dichalcogenides emerged in compressed 2H-TaS2, Adv. Mater. 34(9), 2103168 (2022)

    Article  Google Scholar 

  103. W. Zhang, L. Zhang, P. K. J. Wong, J. Yuan, G. Vinai, P. Torelli, G. van der Laan, Y. P. Feng, and A. T. S. Wee, Magnetic transition in monolayer VSe2via interface hybridization, ACS Nano 13(8), 8997 (2019)

    Article  Google Scholar 

  104. H. Liu, L. Bao, Z. Zhou, B. Che, R. Zhang, C. Bian, R. Ma, L. Wu, H. Yang, J. Li, C. Gu, C. M. Shen, S. Du, and H. J. Gao, Quasi-2D transport and weak antilocalization effect in few-layered VSe2, Nano Lett. 19(7), 4551 (2019)

    Article  ADS  Google Scholar 

  105. R. Chua, J. Henke, S. Saha, Y. Huang, J. Gou, X. He, T. Das, J. van Wezel, A. Soumyanarayanan, and A. T. S. Wee, Coexisting charge-ordered states with distinct driving mechanisms in monolayer VSe2, ACS Nano 16(1), 783 (2022)

    Article  Google Scholar 

  106. W. Yu, J. Li, T. S. Herng, Z. Wang, X. Zhao, X. Chi, W. Fu, I. Abdelwahab, J. Zhou, J. Dan, Z. Chen, Z. Chen, Z. Li, J. Lu, S. J. Pennycook, Y. P. Feng, J. Ding, and K. P. Loh, Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism, Adv. Mater. 31(40), 1903779 (2019)

    Article  Google Scholar 

  107. Y. Wen, Z. Liu, Y. Zhang, C. Xia, B. Zhai, X. Zhang, G. Zhai, C. Shen, P. He, R. Cheng, L. Yin, Y. Yao, M. Getaye Sendeku, Z. Wang, X. Ye, C. Liu, C. Jiang, C. Shan, Y. Long, and J. He, Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3, Nano Lett. 20(5), 3130 (2020)

    Article  ADS  Google Scholar 

  108. Y. Zhang, J. Chu, L. Yin, T. A. Shifa, Z. Cheng, R. Cheng, F. Wang, Y. Wen, X. Zhan, Z. Wang, and J. He, Ultrathin magnetic 2D single-crystal CrSe, Adv. Mater. 31(19), 1900056 (2019)

    Article  Google Scholar 

  109. X. Zhang, Z. Luo, P. Yu, Y. Cai, Y. Du, D. Wu, S. Gao, C. Tan, Z. Li, M. Ren, T. Osipowicz, S. Chen, Z. Jiang, J. Li, Y. Huang, J. Yang, Y. Chen, C. Y. Ang, Y. Zhao, P. Wang, L. Song, X. Wu, Z. Liu, A. Borgna, and H. Zhang, Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution, Nat. Catal. 1(6), 460 (2018)

    Article  Google Scholar 

  110. Y. Liu, J. Wu, K. P. Hackenberg, J. Zhang, Y. M. Wang, Y. Yang, K. Keyshar, J. Gu, T. Ogitsu, R. Vajtai, J. Lou, P. M. Ajayan, B. C. Wood, and B. I. Yakobson, Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution, Nat. Energy 2(9), 17127 (2017)

    Article  ADS  Google Scholar 

  111. J. Yang, A. R. Mohmad, Y. Wang, R. Fullon, X. Song, F. Zhao, I. Bozkurt, M. Augustin, E. J. G. Santos, H. S. Shin, W. Zhang, D. Voiry, H. Y. Jeong, and M. Chhowalla, Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution, Nat. Mater. 18(12), 1309 (2019)

    Article  ADS  Google Scholar 

  112. M. Yan, X. Pan, P. Wang, F. Chen, L. He, G. Jiang, J. Wang, J. Z. Liu, X. Xu, X. Liao, J. Yang, and L. Mai, Field-effect tuned adsorption dynamics of VSe2 nanosheets for enhanced hydrogen evolution reaction, Nano Lett. 17(7), 4109 (2017)

    Article  ADS  Google Scholar 

  113. Z. L. Liu, B. Lei, Z. L. Zhu, L. Tao, J. Qi, D. L. Bao, X. Wu, L. Huang, Y. Y. Zhang, X. Lin, Y. L. Wang, S. Du, S. T. Pantelides, and H. J. Gao, Spontaneous formation of 1D pattern in monolayer VSe2 with dispersive adsorption of Pt atoms for HER catalysis, Nano Lett. 19(8), 4897 (2019)

    Article  ADS  Google Scholar 

  114. I. S. Kwon, I. H. Kwak, T. T. Debela, J. Y. Kim, S. J. Yoo, J. G. Kim, J. Park, and H. S. Kang, Phase-transition Mo1−xVxSe2 alloy nanosheets with rich V-Se vacancies and their enhanced catalytic performance of hydrogen evolution reaction, ACS Nano 15(9), 14672 (2021)

    Article  Google Scholar 

  115. Y. Huan, J. Shi, X. Zou, Y. Gong, C. Xie, Z. Yang, Z. Zhang, Y. Gao, Y. Shi, M. Li, P. Yang, S. Jiang, M. Hong, L. Gu, Q. Zhang, X. Yan, and Y. Zhang, Scalable production of two-dimensional metallic transition metal dichalcogenide nanosheet powders using NaCl templates toward electrocatalytic applications, J. Am. Chem. Soc. 141(47), 18694 (2019)

    Article  Google Scholar 

  116. C. Yang, J. Feng, F. Lv, J. Zhou, C. Lin, K. Wang, Y. Zhang, Y. Yang, W. Wang, J. Li, and S. Guo, Metallic graphene-like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism, Adv. Mater. 30(27), 1800036 (2018)

    Article  Google Scholar 

  117. F. Ming, H. Liang, Y. Lei, W. Zhang, and H. N. Alshareef, Solution synthesis of VSe2 nanosheets and their alkali metal ion storage performance, Nano Energy 53, 11 (2018)

    Article  Google Scholar 

  118. Q. Yu, Z. Zhang, S. Qiu, Y. Luo, Z. Liu, F. Yang, H. Liu, S. Ge, X. Zou, B. Ding, W. Ren, H. M. Cheng, C. Sun, and B. Liu, A Ta-TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution, Nat. Commun. 12(1), 6051 (2021)

    Article  ADS  Google Scholar 

  119. J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang, and Y. Xie, Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for inplane supercapacitors, J. Am. Chem. Soc. 133(44), 17832 (2011)

    Article  Google Scholar 

  120. P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, and L. Mai, Layered VS2 nanosheet-based aqueous Zn ion battery cathode, Adv. Energy Mater. 7(11), 1601920 (2017)

    Article  Google Scholar 

  121. J. Zhou, L. Wang, M. Yang, J. Wu, F. Chen, W. Huang, N. Han, H. Ye, F. Zhao, Y. Li, and Y. Li, Hierarchical VS2 nanosheet assemblies: A universal host material for the reversible storage of alkali metal ions, Adv. Mater. 29(35), 1702061 (2017)

    Article  Google Scholar 

  122. H. Liang, H. Shi, D. Zhang, F. Ming, R. Wang, J. Zhuo, and Z. Wang, Solution growth of vertical VS2 nanoplate arrays for electrocatalytic hydrogen evolution, Chem. Mater. 28(16), 5587 (2016)

    Article  Google Scholar 

  123. S. Zhang, J. Wang, N. L. Torad, W. Xia, M. A. Aslam, Y. V. Kaneti, Z. Hou, Z. Ding, B. Da, A. Fatehmulla, A. M. Aldhafiri, W. A. Farooq, J. Tang, Y. Bando, and Y. Yamauchi, Rational design of nanoporous MoS2/VS2 heteroarchitecture for ultrahigh performance ammonia sensors, Small 16(12), 1901718 (2020)

    Article  Google Scholar 

  124. Y. Zhou, Q. Xu, T. Ge, X. Zheng, L. Zhang, and P. Yan, Accurate control of VS2 nanosheets for coexisting high photoluminescence and photothermal conversion efficiency, Angew. Chem. Int. Ed. 59(8), 3322 (2020)

    Article  Google Scholar 

  125. Z. Zhang, Y. Gong, X. Zou, P. Liu, P. Yang, J. Shi, L. Zhao, Q. Zhang, L. Gu, and Y. Zhang, Epitaxial growth of two-dimensional metal-semiconductor transition-metal dichalcogenide vertical stacks (VSe2/MX2) and their band alignments, ACS Nano 13(1), 885 (2019)

    Article  Google Scholar 

  126. J. Shi, Y. Huan, X. Zhao, P. Yang, M. Hong, C. Xie, S. Pennycook, and Y. Zhang, Two-dimensional metallic vanadium ditelluride as a high-performance electrode material, ACS Nano 15(1), 1858 (2021)

    Article  Google Scholar 

  127. Z. Zhou, F. Yang, S. Wang, L. Wang, X. Wang, C. Wang, Y. Xie, and Q. Liu, Emerging of two-dimensional materials in novel memristor, Front. Phys. 17(2), 23204 (2022)

    Article  ADS  Google Scholar 

  128. L. Du, Z. Wang, and G. Zhao, Novel intelligent devices: Two-dimensional materials based memristors, Front. Phys. 17(2), 23602 (2022)

    Article  ADS  Google Scholar 

  129. H. Yu, A. Kutana, and B. I. Yakobson, Carrier delocalization in two-dimensional coplanar p–n junctions of graphene and metal dichalcogenides, Nano Lett. 16(8), 5032 (2016)

    Article  ADS  Google Scholar 

  130. Y. Zhang, L. Yin, J. Chu, T. A. Shifa, J. Xia, F. Wang, Y. Wen, X. Zhan, Z. Wang, and J. He, Edge-epitaxial growth of 2D NbS2-WS2 lateral metal-semiconductor heterostructures, Adv. Mater. 30(40), 1803665 (2018)

    Article  Google Scholar 

  131. Q. Fu, X. Wang, J. Zhou, J. Xia, Q. Zeng, D. Lv, C. Zhu, X. Wang, Y. Shen, X. Li, Y. Hua, F. Liu, Z. Shen, C. Jin, and Z. Liu, One-step synthesis of metal/semiconductor heterostructure NbS2/MoS2, Chem. Mater. 30(12), 4001 (2018)

    Article  Google Scholar 

  132. X. Wang, Z. Wang, J. Zhang, X. Wang, Z. Zhang, J. Wang, Z. Zhu, Z. Li, Y. Liu, X. Hu, J. Qiu, G. Hu, B. Chen, N. Wang, Q. He, J. Chen, J. Yan, W. Zhang, T. Hasan, S. Li, H. Li, H. Zhang, Q. Wang, X. Huang, and W. Huang, Realization of vertical metal semiconductor heterostructures via solution phase epitaxy, Nat. Commun. 9(1), 3611 (2018)

    Article  ADS  Google Scholar 

  133. X. Zhai, X. Xu, J. Peng, F. Jing, Q. Zhang, H. Liu, and Z. Hu, Enhanced optoelectronic performance of CVD-grown metal—semiconductor NiTe2/MoS2 heterostructures, ACS Appl. Mater. Interfaces 12(21), 24093 (2020)

    Article  Google Scholar 

  134. W. S. Leong, Q. Ji, N. Mao, Y. Han, H. Wang, A. J. Goodman, A. Vignon, C. Su, Y. Guo, P. C. Shen, Z. Gao, D. A. Muller, W. A. Tisdale, and J. Kong, Synthetic lateral metal-semiconductor heterostructures of transition metal disulfides, J. Am. Chem. Soc. 140(39), 12354 (2018)

    Article  Google Scholar 

  135. J. Li, X. Yang, Y. Liu, B. Huang, R. Wu, Z. Zhang, B. Zhao, H. Ma, W. Dang, Z. Wei, K. Wang, Z. Lin, X. Yan, M. Sun, B. Li, X. Pan, J. Luo, G. Zhang, Y. Liu, Y. Huang, X. Duan, and X. Duan, General synthesis of two-dimensional van der Waals heterostructure arrays, Nature 579(7799), 368 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant Nos. 2018YFA0703700 and 2021YFA1200800), the National Natural Science Foundation of China (Grant Nos. 91964203 and 92164103), the Beijing National Laboratory for Molecular Sciences (Grant No. BNLMS202001), and the Fundamental Research Funds for the Central Universities (Grant No. 2042021kf0029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Shi or Jun He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, M., Yang, J., Li, X. et al. Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Front. Phys. 17, 63601 (2022). https://doi.org/10.1007/s11467-022-1190-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1190-1

Keywords

Navigation