Skip to main content
Log in

Computational exploration and screening of novel Janus MA2Z4 (M = Sc-Zn, Y-Ag, Hf-Au; A=Si, Ge; Z=N, P) monolayers and potential application as a photocatalyst

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

By high-throughput calculations, 13 thermally and environmentally stable Janus MA2Z4 monolayers were screened from 104 types of candidates. The 13 stable monolayers have very high charge carrier concentrations (×1015 cm-2), which are better than those of the well-known graphene and TaS2. Because of their excellent conductivity, the 6 monolayers with band gaps less than 0.5 eV are identified as potential electrode materials for hydrogen evolution reaction applications. For potential applications as photoelectric or photocatalytic materials, bandgaps (Eg-HSE) higher than 0.5 eV remained, which resulted in 7 potential candidates. Based on optical absorption analysis in the visible-light range, H-HfSiGeP4 and H-MoSiGeP4 have higher absorption ability and optical conductivity, which is quite impressive for optoelectronic, solar cell device, and photocatalysis applications. Additionally, the transmittance coefficient of Janus MA2Z4 monolayers is approximately 70%–80% in the visible-light range, which implies that these monolayers show good light transmittance. For potential applications as photocatalysts, the redox potential and charge effective mass analysis indicate that H-HfSiGeP4, H-MoSiGeP4, T-ScSiGeN4, and T-ZrSiGeN4 are suitable photocatalysts for CO2 reduction reactions. Using high-throughput identification, 13 types of new and stable Janus MA2Z4 monolayers were explored, and the basic properties and potential applications were investigated, which can reduce the time for experiments and provide basic data for the material genome initiative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bafekry, M. Faraji, D. M. Hoat, M. Shahrokhi, M. M. Fadlallah, F. Shojaei, S. A. H. Feghhi, M. Ghergherehchi, and D. Gogova, MoSi2N4 single-layer: A novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties, J. Phys. D 54(15), 155303 (2021)

    Article  ADS  Google Scholar 

  2. Y. Xiao, C. Shen, and W. B. Zhang, Screening and prediction of metal-doped α-borophene monolayer for nitric oxide elimination, Mater. Today Chem. 25, 100958 (2022)

    Article  Google Scholar 

  3. Y. Li, Z. Xia, Q. Yang, L. Wang, and Y. Xing, Review on g-C3N4-based S-scheme heterojunction photocatalysts, J. Mater. Sci. Technol. 125, 128 (2022)

    Article  Google Scholar 

  4. H. Li, H. Li, Z. Wu, L. Zhu, C. Li, S. Lin, X. Zhu, and Y. Sun, Realization of high-purity 1T-MoS2 by hydrothermal synthesis through synergistic effect of nitric acid and ethanol for supercapacitors, J. Mater. Sci. Technol. 123, 34 (2022)

    Article  Google Scholar 

  5. Y. L. Hong, Z. B. Liu, L. Wang, T. Y. Zhou, W. Ma, C. Xu, S. Feng, L. Chen, M. L. Chen, D. M. Sun, X. Q. Chen, H. M. Cheng, and W. C. Ren, Chemical vapor deposition of layered two-dimensional MoSi2N4 materials, Science 369(6504), 670 (2020)

    Article  ADS  Google Scholar 

  6. X. M. Li, Z. Z. Lin, L. R. Cheng, and X. Chen, Layered MoSi2N4 as electrode material of Zn-air battery, Phys. Status Solidi Rapid Res. Lett. 16(5), 2200007 (2022)

    Article  ADS  Google Scholar 

  7. C. Xiao, Z. Ma, R. Sa, Z. Cui, S. Gao, W. Du, X. Sun, and Q. Li, Adsorption behavior of environmental gas molecules on pristine and defective MoSi2N4: Possible application as highly sensitive and reusable gas sensors, ACS Omega 7(10), 8706 (2022)

    Article  Google Scholar 

  8. B. Ye, X. Jiang, Y. Gu, G. Yang, Y. Liu, H. Zhao, X. Yang, C. Wei, X. Zhang, and N. Lu, Quantum transport of short-gate MOSFETs based on monolayer MoSi2N4, Phys. Chem. Chem. Phys. 24(11), 6616 (2022)

    Article  Google Scholar 

  9. C. Xiao, R. Sa, Z. Cui, S. Gao, W. Du, X. Sun, X. Zhang, Q. Li, and Z. Ma, Enhancing the hydrogen evolution reaction by non-precious transition metal (Non-metal) atom doping in defective MoSi2N4 monolayer, Appl. Surf. Sci. 563, 150388 (2021)

    Article  Google Scholar 

  10. A. Bafekry, M. Faraji, D. M. Hoat, M. Shahrokhi, M. M. Fadlallah, F. Shojaei, S. A. H. Feghhi, M. Ghergherehchi, and D. Gogova, MoSi2N4 single-layer: A novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties, J. Phys. D 54(15), 155303 (2021)

    Article  ADS  Google Scholar 

  11. N. Mwankemwa, H. E. Wang, T. Zhu, Q. Fan, F. Zhang, and W. Zhang, First principles calculations investigation of optoelectronic properties and photocatalytic CO2 reduction of (MoSi2N4)5-n/(MoSiGeN4)n in-plane heterostructures, Results Phys. 37, 105549 (2022)

    Article  Google Scholar 

  12. T. Yang, J. Zhou, T. T. Song, L. Shen, Y. P. Feng, and M. Yang, High-throughput identification of exfoliable two-dimensional materials with active basal planes for hydrogen evolution, ACS Energy Lett. 5(7), 2313 (2020)

    Article  Google Scholar 

  13. R. Singh and G. Bester, Hydrofluorinated graphene: Two-dimensional analog of polyvinylidene fluoride, Phys. Rev. B 84(15), 155427 (2011)

    Article  ADS  Google Scholar 

  14. M. L. Sun, Q. Q. Ren, S. K. Wang, J. Yu, and W. C. Tang, Electronic properties of Janus silicene: New direct band gap semiconductors, J. Phys. D 49(44), 445305 (2016)

    Article  ADS  Google Scholar 

  15. R. Peng, Y. Ma, B. Huang, and Y. Dai, Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light, J. Mater. Chem. A 7(2), 603 (2019)

    Article  Google Scholar 

  16. A. Mogulkoc, Y. Mogulkoc, S. Jahangirov, and E. Durgun, Characterization and Stability of Janus TiXY (X/Y = S, Se, and Te) Monolayers, J. Phys. Chem. C 123(49), 29922 (2019)

    Article  Google Scholar 

  17. L. X. Wang, Z. Lin, and Y. K. An, Tunable valley polarization, magnetic anisotropy and dipole moment for layered Janus 2H-VSSe with intrinsic room temperature ferromagnetism, J. Alloys Compd. 854, 157141 (2021)

    Article  Google Scholar 

  18. C. M. Zhang, Y. H. Nie, S. Sanvito, and A. J. Du, First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelas-ticity, and large valley polarization, Nano Lett. 19(2), 1366 (2019)

    Article  ADS  Google Scholar 

  19. S. D. Guo, X. S. Guo, R. Y. Han, and Y. Deng, Predicted Janus SnSSe monolayer: A comprehensive first-principles study, Phys. Chem. Chem. Phys. 21(44), 24620 (2019)

    Article  Google Scholar 

  20. Y. C. Cheng, Z. Y. Zhu, M. Tahir, and U. Schwingenschlogl, Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers, Europhys. Lett. 102(5), 57001 (2013)

    Article  ADS  Google Scholar 

  21. A. Y. Lu, H. Y. Zhu, J. Xiao, C. P. Chuu, Y. M. Han, M. H. Chiu, C. C. Cheng, C. W. Yang, K. H. Wei, Y. M. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. D. Yang, D. A. Muller, M. Y. Chou, X. Zhang, and L. J. Li, Janus monolayers of transition metal dichalcogenides, Nat. Nanotechnol. 12(8), 744 (2017)

    Article  Google Scholar 

  22. Y. Guo, S. Zhou, Y. Z. Bai, and J. J. Zhao, Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers, Appl. Phys. Lett. 110(16), 163102 (2017)

    Article  ADS  Google Scholar 

  23. S. D. Guo, W. Q. Mu, Y. T. Zhu, R. Y. Han, and W. C. Ren, Predicted septuple-atomic-layer Janus MSiGeN4 (M = Mo and W) monolayers with Rashba spin splitting and high electron carrier mobilities, J. Mater. Chem. C 9(7), 2464 (2021)

    Article  Google Scholar 

  24. Y. D. Yu, J. Zhou, Z. L. Guo, and Z. M. Sun, Novel two-dimensional Janus MoSiGeN4 and WSiGeN4 as highly efficient photocatalysts for spontaneous overall water splitting, ACS Appl. Mater. Interfaces 13(24), 28090 (2021)

    Article  Google Scholar 

  25. N. T. T. Binh, C. Q. Nguyen, T. V. Vu, and C. V. Nguyen, Interfacial electronic properties and tunable contact types in graphene/Janus MoGeSiN4 heterostructures, J. Phys. Chem. Lett. 12(16), 3934 (2021)

    Article  Google Scholar 

  26. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  27. B. Hammer, L. B. Hansen, and J. K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys. Rev. B 59(11), 7413 (1999)

    Article  ADS  Google Scholar 

  28. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  29. W. Zhang, S. Chen, M. He, G. Zhu, W. Yang, Y. Tian, Z. Zhang, S. Zhang, F. Zhang, and Q. Wu, Enhanced photocatalytic properties of Bi4O5Br2 by Mn doping: A first principles study, Mater. Res. Express 5(7), 075512 (2018)

    Article  ADS  Google Scholar 

  30. L. Li, W. Wang, H. Liu, X. Liu, Q. Song, and S. Ren, First principles calculations of electronic band structure and optical properties of Cr-doped ZnO, J. Phys. Chem. C 113(19), 8460 (2009)

    Article  Google Scholar 

  31. D. Ghosh, G. Periyasamy, and S. K. Pati, Transition metal embedded two-dimensional C3N4-graphene nanocomposite: A multifunctional material, J. Phys. Chem. C 118(28), 15487 (2014)

    Article  Google Scholar 

  32. A. J. Samuels and J. D. Carey, Molecular doping and band-gap opening of bilayer graphene, ACS Nano 7(3), 2790 (2013)

    Article  Google Scholar 

  33. J. Bekaert, E. Khestanova, D. G. Hopkinson, J. Birkbeck, N. Clark, M. Zhu, D. A. Bandurin, R. Gorbachev, S. Fairclough, Y. Zou, M. Hamer, D. J. Terry, J. J. P. Peters, A. M. Sanchez, B. Partoens, S. J. Haigh, M. V. Milošević, and I. V. Grigorieva, Enhanced superconductivity in few-layer TaS2 due to healing by oxygenation, Nano Lett. 20(5), 3808 (2020)

    Article  ADS  Google Scholar 

  34. Z. Sun, J. Xu, N. Mwankemwa, W. Yang, X. Wu, Z. Yi, S. Chen, and W. Zhang, Alkali-metal(Li, Na, and K)-adsorbed MoSi2N4 monolayer: an investigation of its outstanding electronic, optical, and photocatalytic properties, Commum. Theor. Phys. 74(1), 015503 (2022)

    Article  ADS  Google Scholar 

  35. J. Robertson, High dielectric constant oxides, Eur. Phys. J. Appl. Phys. 28(3), 265 (2004)

    Article  ADS  Google Scholar 

  36. J. Wang, W. Zhang, Q. Wu, S. Gao, Y. Jin, Y. Xiao, and Y. Chen, The electronic and optical properties of Au decorated(101̅4) dolomite surface: A first principles calculations, Results Phys. 21, 103827 (2021)

    Article  Google Scholar 

  37. Z. Zhao, Z. Li, and Z. Zou, Electronic structure and optical properties of monoclinic clinobisvanite BiVO4, Phys. Chem. Chem. Phys. 13(10), 4746 (2011)

    Article  Google Scholar 

  38. W. Yu, D. Xu, and T. Peng, Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: A direct Z-scheme mechanism, J. Mater. Chem. A 3(39), 19936 (2015)

    Article  Google Scholar 

  39. L. Thulin and J. Guerra, Calculations of strain-modified anatase TiO2 band structures, Phys. Rev. B 77(19), 195112 (2008)

    Article  ADS  Google Scholar 

  40. A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38(1), 253 (2009)

    Article  Google Scholar 

  41. X. Li, P. Wang, Y. Wu, Z. Liu, Q. Zhang, T. Zhang, Z. Wang, Y. Liu, Z. Zheng, and B. Huang, ZnGeP2: A near-infrared-activated photocatalyst for hydrogen production, Front. Phys. 15(2), 23604 (2020)

    Article  ADS  Google Scholar 

  42. W. Zhang, Z. Zhang, S. Kwon, F. Zhang, B. Stephen, K. K. Kim, R. Jung, S. Kwon, K. B. Chung, and W. Yang, Photocatalytic improvement of Mn-adsorbed g-C3N4, Appl. Catal. B 206, 271 (2017)

    Article  Google Scholar 

  43. J. Liu, Origin of high photocatalytic efficiency in monolayer g-C3N4/CdS heterostructure: A hybrid DFT study, J. Phys. Chem. C 119(51), 28417 (2015)

    Article  ADS  Google Scholar 

  44. S. Chen, Y. Hu, S. Meng, and X. Fu, Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3, Appl. Catal. B 150–151, 564 (2014)

    Article  Google Scholar 

  45. Z. Zhou, S. Yuan, and J. Wang, Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures, Front. Phys. 16(4), 43203 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 52262042) and the Starting Funds for High-level Talents from Yunnan Normal University.

Author information

Authors and Affiliations

Authors

Contributions

CRediT authorship contribution statement Weibin Zhang: Data Curation, Investigation, Writing. Woochul Yang, Yingkai Liu & Zhiyong Liu: Review & Editing. Fuchun Zhang: Conceptualization, Methodology.

Corresponding authors

Correspondence to Weibin Zhang or Fuchun Zhang.

Ethics declarations

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Supporting Information

11467_2022_1199_MOESM1_ESM.pdf

Computational exploration and screening of novel Janus MA2Z4 (M = Sc-Zn, Y-Ag, Hf-Au; A=Si, Ge; Z=N, P) monolayers and potential application as a photocatalyst

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Yang, W., Liu, Y. et al. Computational exploration and screening of novel Janus MA2Z4 (M = Sc-Zn, Y-Ag, Hf-Au; A=Si, Ge; Z=N, P) monolayers and potential application as a photocatalyst. Front. Phys. 17, 63509 (2022). https://doi.org/10.1007/s11467-022-1199-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1199-5

Keywords

Navigation