Skip to main content
Log in

Plasmon Resonances in V-Shaped Gold Nanostructures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Using numerical simulations, we examine the change in plasmon resonance behavior in gold nanorod structures that have a V shape. The reduction in symmetry compared to linear rods causes two different longitudinal-type resonances to appear in a single structure, and the relative intensity and hybridization of these can be controlled by varying the angle of the arms of the “V.” The resonances may also be selectively excited by controlling the polarization of the incident light, thereby providing a convenient way to control a nanoscale optical electric field using far-field parameters. For example, the wavelength at which a strong resonance occurs in the V-shaped structures studied can be switched between 630 and 900 nm by a 90° rotation of the polarization of the incident light. Due to the symmetry of the targets, there will be three types of special near-field location; a location at which the electric field intensity is enhanced by either resonance, a location at which the electric field intensity is enhanced by the 630 nm resonance but not by the 890 nm resonance, and a location at which the electric field intensity is enhanced by the 890 nm resonance but not by the 630 nm one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ueno K et al (2005) Optical properties of nanoengineered gold blocks. Optics Lett 30(16):2158–2160

    Article  Google Scholar 

  2. Stokes N, McDonagh A, Cortie MB (2010) Spectrally selective coatings based on anisotropic gold nanoparticles. J Nanopart Res 12(8):2821–2830

    Article  CAS  Google Scholar 

  3. Zijlstra P, Chon JWM, Gu M (2009) Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459:410–413

    Article  CAS  Google Scholar 

  4. Cortie M, Xu X, Ford M (2006) Effect of composition and packing configuration on the dichroic optical properties of coinage metal nanorods. Phys Chem Chem Phys 8:3520–3527

    Article  CAS  Google Scholar 

  5. Huang X et al (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228

    Article  Google Scholar 

  6. Pissuwan D et al (2007) A golden bullet? Selective targeting of Toxoplasma gondii tachyzoites using antibody-functionalised gold nanoparticles. Nano Lett 7(12):3808–3812

    Article  CAS  Google Scholar 

  7. Kealley CS et al (2010) Sensors based on monochromatic interrogation of a localised surface plasmon resonance. Sens Actuators B 148:34–40

    Article  Google Scholar 

  8. Yi M et al (2011) Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film. Plasmonics 6(2):213–217

    Article  CAS  Google Scholar 

  9. Huang X et al (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120

    Article  CAS  Google Scholar 

  10. Liu L et al (2011) Application of gold nanorods for plasmonic and magnetic imaging of cancer cells. Plasmonics 6(1):105–112

    Article  CAS  Google Scholar 

  11. Pissuwan D, Valenzuela SM, Cortie MB (2008) Prospects for gold nanorod particles in diagnostic and therapeutic applications. Biotechnol Genet Eng Rev 25:93–112

    Article  CAS  Google Scholar 

  12. Wang H et al (2005) In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci 102(44):15752–15756

    Article  CAS  Google Scholar 

  13. Farrer RA et al (2005) Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles. Nano Lett 5(6):1139–1142

    Article  CAS  Google Scholar 

  14. Cohanoschi I, Hernández FE (2005) Surface plasmon enhancement of two- and three-photon absorption of Hoechst 33 258 dye in activated gold colloid solution. J Phys Chem B 109:14506–14512

    Article  CAS  Google Scholar 

  15. Wenseleers W et al (2002) Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters. J Phys Chem B 106(27):6853–6863

    Article  CAS  Google Scholar 

  16. Ueno K et al (2008) Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source. J Am Chem Soc 130(22):6928–6929

    Article  CAS  Google Scholar 

  17. ten Bloemendal D et al (2006) Local field spectroscopy of metal dimers by TPL microscopy. Plasmonics 1(1):41–44

    Article  Google Scholar 

  18. Geldhauser T et al (2011) Visualization of near-field enhancements of gold triangles by nonlinear photopolymerization. Plasmonics 6:207–212

    Article  CAS  Google Scholar 

  19. Tierney MJ, Martin CR (1989) Transparent metal microstructures. J Phys Chem 93(8):2878–2880

    Article  CAS  Google Scholar 

  20. Foss CA et al (1992) Optical properties of composite membranes containing arrays of nanoscopic gold cylinders. J Phys Chem 96(19):7497–7499

    Article  CAS  Google Scholar 

  21. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  22. Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13(18):1389–1393

    Article  CAS  Google Scholar 

  23. Stokes N, McDonagh AM, Cortie MB (2007) Preparation of nanoscale gold structures by nanolithography. Gold Bull 40(4):310–320

    Article  CAS  Google Scholar 

  24. Yu Y-Y et al (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664

    Article  CAS  Google Scholar 

  25. Duan JS et al (2009) Optical properties of rodlike metallic nanostructures: insight from theory and experiment. J Phys Chem C 113(35):15524–15532

    Article  CAS  Google Scholar 

  26. Aizpurua J et al (2003) Optical properties of gold nanorings. Phys Rev Lett 90(5):057401

    Article  CAS  Google Scholar 

  27. Spector S et al (2001) Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks. J Vac Sci Technol B 19(6):2757–2760

    Article  CAS  Google Scholar 

  28. Ueno K et al (2008) Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths. Adv Mater 20(1):26–30

    Article  CAS  Google Scholar 

  29. Cortie MB, Stokes N, McDonagh A (2010) Plasmon resonance and electric field amplification of crossed gold nanorod targets. Photonics Nanostructures Fundam Appl 7(3):143–152

    Article  Google Scholar 

  30. Khlebtsov BN, Khlebtsov NG (2007) Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment. J Phys Chem C 111:11516–11527

    Article  CAS  Google Scholar 

  31. Payne EK et al (2006) Multipole plasmon resonances in gold nanorods. J Phys Chem B 110:2150–2154

    Article  CAS  Google Scholar 

  32. Jain PK, Eustis S, El-Sayed MA (2006) Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B 110(37):18243–18253

    Article  CAS  Google Scholar 

  33. Funston AM et al (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett 9(4):1651–1658

    Article  CAS  Google Scholar 

  34. Stokes N (2010) Optically-selective window coatings of precious metal nanoparticles, PhD, Dept. of Physics and Advanced Materials, University of Technology Sydney

  35. Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11(4):1491–1499

    Article  Google Scholar 

  36. Draine BT, Flatau PJ (2008) User guide for the discrete dipole approximation code DDSCAT 7.0, http://arxiv.org/abs/0809.0337. Accessed Sept 2008

  37. Brioude A, Jiang XC, Pileni MP (2005) Optical properties of gold nanorods: DDA simulations supported by experiments. J Phys Chem B 109:13138–13142

    Article  CAS  Google Scholar 

  38. Kelly KL et al (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  39. Myroshnychenko V et al (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37:1792–1805

    Article  CAS  Google Scholar 

  40. Nebeker BM, de la Peña JL, Hirleman D (2001) Comparisons of the discrete-dipole approximation and modified double interaction model methods to predict light scattering from small features on surfaces. J Quant Spectrosc Radiat Transfer 70:749–759

    Article  CAS  Google Scholar 

  41. Yurkin MA, Hoekstra AG (2007) The discrete dipole approximation: an overview and recent developments. J Quant Spectrosc Radiat Transfer 106:558–589

    Article  CAS  Google Scholar 

  42. Weaver JH, Frederikse HPR (2001) In: Lide DR (ed) CRC handbook of chemistry and physics. CRC Press, Boca Raton, pp 12–133

    Google Scholar 

  43. Novo C et al (2008) Influence of the medium refractive index on the optical properties of single gold triangular prisms on a substrate. J Phys Chem C Lett 112:3–7

    Article  CAS  Google Scholar 

  44. Lazzari R et al (2002) Multipolar plasmon resonances in supported silver particles: the case of Ag/α-Al2O3 (0001). Phys Rev B 65:235424

    Article  Google Scholar 

  45. Mayergoyz ID, Fredkin DR, Zhang Z (2005) Electrostatic (plasmon) resonances in nanoparticles. Phys Rev B 72:155412

    Article  Google Scholar 

  46. Hohenester U, Krenn J (2005) Surface plasmon resonances of single and coupled metallic nanoparticles: a boundary integral method approach. Phys Rev B 72:195429

    Article  Google Scholar 

  47. Willingham B, Brandl DW, Nordlander P (2008) Plasmon hybridization in nanorod dimers. Appl Phys B 93:209–216

    Article  CAS  Google Scholar 

  48. Halas NJ et al (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961

    Article  CAS  Google Scholar 

  49. Gluodenis M, Jr CAF (2002) The effect of mutual orientation on the spectra of metal nanoparticle rod–rod and rod–sphere pairs. J Phys Chem B 106(37):9484–9489

    Article  CAS  Google Scholar 

  50. Tovmachenko OG et al (2006) Fluorescence enhancement by metal-core/silica-shell nanoparticles. Adv Mater 18:91–95

    Article  CAS  Google Scholar 

  51. Liu J et al (2006) Anisotropic optical properties of semitransparent coatings of gold nanocaps. Adv Funct Mater 16(11):1457–1461

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professors B.J. Draine and P.J. Flatau for making their useful program, DDSCAT, available, and our colleague Dr M. Arnold for the useful suggestions regarding target generation. This work was supported by the Australian Research Council and AngloGold Ashanti Limited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Cortie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stokes, N., Cortie, M.B., Davis, T.J. et al. Plasmon Resonances in V-Shaped Gold Nanostructures. Plasmonics 7, 235–243 (2012). https://doi.org/10.1007/s11468-011-9299-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9299-z

Keywords

Navigation