Skip to main content
Log in

Excitation of Multiple Surface Plasmon-Polaritons by a Metal Layer Inserted in an Equichiral Sculptured Thin Film

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Excitation of multiple surface plasmon-polaritons (SPPs) by an equichiral sculptured thin film with a metal layer defect was studied theoretically in the Sarid configuration, using the transfer matrix method. Multiple SPP modes were distinguished from waveguide modes in optical absorption for p-polarized plane wave. The degree of localization of multiple SPP waves was investigated by calculation of the time-averaged Poynting vector. The results showed that the long-range and short-range SPP waves can simultaneously be excited at both interfaces of metal core in this proposed structure which may be used in a broad range of sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Polo JA, Lakhtakia A (2011) Surface electromagnetic waves: a review. Laser and Photonics Rev 5(2):234–246. https://doi.org/10.1002/lpor.200900050

    Article  Google Scholar 

  2. Swiontek SE, Pulsifer DP, Lakhtakia A (2013) Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform. Sci Rep 3(1):1409. https://doi.org/10.1038/srep01409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pulsifer DP, Lakhtakia A (2009) Multiple surface plasmon polariton waves .Electron Lett 45:1137–1138. https://doi.org/10.1049/el.2009.2049

    Article  Google Scholar 

  4. Mackay TG, Lakhtakia A (2012) Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing. IEEE Sensors J 12(2):273–280. https://doi.org/10.1109/JSEN.2010.2067448

    Article  Google Scholar 

  5. Motyka MA, Lakhtakia A (2008) Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Journal of Nanophotonics 2(1):021910. https://doi.org/10.1117/1.3033757

    Article  CAS  Google Scholar 

  6. Faryad M, Lakhtakia A (2011) Grating-coupled excitation of multiple surface plasmon-polariton waves. Phys Rev A 84(3):033852. https://doi.org/10.1103/PhysRevA.84.033852

    Article  CAS  Google Scholar 

  7. Robbie K, Brett MJ (1997) Sculptured thin films and glancing angle deposition: growth mechanics and applications. J Vac Sci Technol A 15(3):1460–1465. https://doi.org/10.1116/1.580562

    Article  CAS  Google Scholar 

  8. Robbie K, Sit JC, Brett MJ (1998) Advanced techniques for glancing angle deposition. J Vac Sci Technol B 16(3):1115. https://doi.org/10.1116/1.590019

    Article  CAS  Google Scholar 

  9. Robbie K, Brett MJ, Lakhtakia A (1996) Chiral sculptured thin films. Nature 384(6610):616. https://doi.org/10.1038/384616a0

    Article  CAS  Google Scholar 

  10. Hodgkinson IJ, Lakhtakia A, hong Wu Q, Silva LD, McCall MW (2004) Ambichiral, equichiral and finely chiral layered structures. Opt Commun 239(4-6):353–358. https://doi.org/10.1016/j.optcom.2004.06.005

    Article  CAS  Google Scholar 

  11. van Popta AC, Brett MJ, Sit JC (2005) Double-handed circular Bragg phenomena in polygonal helix thin films. J Appl Phys 98(8):083517. https://doi.org/10.1063/1.2115092

    Article  CAS  Google Scholar 

  12. Mackay TG, Polo JA, Lakhtakia A (2013) Electromagnetic surface waves: a modern perspective. Elsevier, Waltham

    Google Scholar 

  13. Faryad M, Lakhtakia A (2011) Propagation of surface waves and waveguide modes guided by a dielectric slab inserted in a sculptured nematic thin film. Phys Rev A 83(1):013814. https://doi.org/10.1103/PhysRevA.83.013814

    Article  CAS  Google Scholar 

  14. Krenn JR, Weeber J-C (2004) Surface plasmon polaritons in metal stripes and wires. Phil Trans R Soc Lond A 362:739–756 https://doi.org/10.1098/rsta.2003.1344

    Article  CAS  Google Scholar 

  15. Sarid D (1981) Long-range surface-plasma waves on very thin metal films. Phys Rev Lett 47:1927–1930 https://doi.org/10.1103/PhysRevLett.47.1927

    Article  CAS  Google Scholar 

  16. Sarid D, Challener WA (2010) Modern introduction to surface plasmons: theory, Mathematica modeling and applications. University Press, Cambridge. https://doi.org/10.1017/CBO9781139194846

    Book  Google Scholar 

  17. Berini P (2009) Long-range surface plasmon polaritons. Adv Opt Photon 1(3):484. https://doi.org/10.1364/AOP.1.000484

    Article  CAS  Google Scholar 

  18. Lakhtakia A, Messier R (1997) Sculptured thin films - I. Concepts. Mater Res Innov 1(3):145–148. https://doi.org/10.1007/s100190050032

    Article  CAS  Google Scholar 

  19. Messier R, Lakhtakia A (1999) Sculptured thin films — II. Experiments and applications. Mater Res Innov 2:217–222 https://doi.org/10.1007/s100190050088

    Article  CAS  Google Scholar 

  20. Fuzi Y, Sambles J, Bradberry GW (1991) Long-range surface modes supported by thin films. Phys Rev B 44:5855 https://doi.org/10.1103/PhysRevB.44.5855

    Article  Google Scholar 

  21. Faryad M, Lakhtakia A (2010) Surface plasmon–polariton wave propagation guided by a metal slab in a sculptured nematic thin film. J Opt 12(8):085102. https://doi.org/10.1088/2040-8978/12/8/085102

    Article  CAS  Google Scholar 

  22. Polo JA, Mackay TG, Lakhtakia A (2011) Mapping multiple surface-plasmon-polariton-wave modes at the interface of a metal and a chiral sculptured thin film. J Opt SocAm B 28(11):2656. https://doi.org/10.1364/JOSAB.28.002656

    Article  CAS  Google Scholar 

  23. Quail JC, Rako JG, Simon HJ (1983) Long-range surface-plasmon modes in silver and aluminum films. OptLett 8:377–379 https://doi.org/10.1364/OL.8.000377

    CAS  Google Scholar 

  24. Craig AE, Olson GA, Sarid D (1983) Experimental observation of the long-range surface-plasmon polariton. Opt.Lett 8(7):380–382. https://doi.org/10.1364/OL.8.000380

    Article  CAS  PubMed  Google Scholar 

  25. Dohi H, Kuwamura Y, Fukui M, Tada O (1984) Long-range surface Plasmon Polaritons in metal films bounded by similar-refractive-index materials. J Phys Soc Jpn 53(536):2828–2832 https://doi.org/10.1143/JPSJ.53.2828

    Article  CAS  Google Scholar 

  26. Pulsifer DP, Faryad M, Lakhtakia A (2013) Observation of the Dyakonov-Tamm wave. Phys RevLett 111(538):243902 https://doi.org/10.1103/PhysRevLett.111.243902

    Google Scholar 

  27. Hodgkinson I, Hong Wu Q, Hazel J (1998) Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide. Appl Opt 37:2653–2659 https://doi.org/10.1364/AO.37.002653

    Article  CAS  PubMed  Google Scholar 

  28. Lakhtakia A, Jen Y-J, Lin C-F (2009) Multiple trains of same-color surface plasmonpolaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: experimental evidence.J Nanophotonics 3:033506. https://doi.org/10.1117/1.3249629

    Article  CAS  Google Scholar 

  29. Gospodyn J, Sit JC (2006) Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry. Opt Mater 9:318–325 https://doi.org/10.1016/j.optmat.2005.10.004

    Article  CAS  Google Scholar 

  30. Mansuripur M, Zakharian AR, Moloney JV (2007) Surface plasmon polaritons on metallic surfaces. Opt Photon News 18(4):44. https://doi.org/10.1364/OPN.18.4.000044

    Article  CAS  Google Scholar 

  31. Lakhtakia A (2007) Surface-plasmon wave at the planar interface of a metal film and a structurally chiral medium. Opt Commun 279(2):291–297. https://doi.org/10.1016/j.optcom.2007.07.026

    Article  CAS  Google Scholar 

  32. Babaei F, Omidi M (2013) Characteristics of plasmonic at a metal/chiral sculptured thin film interface. Plasmonics 8(2):1051–1057. https://doi.org/10.1007/s11468-013-9508-z

    Article  CAS  Google Scholar 

  33. Babaei F, Shafiian-Barzoki S (2014) Surface plasmon polariton propagation at the interface of a metal and an ambichiral nanostructured medium. Plasmonics 9(3):595–605. https://doi.org/10.1007/s11468-014-9670-y

    Article  CAS  Google Scholar 

  34. Babaei F, Shafiian-Barzoki S (2014) Surface plasmon polariton modes at interface of a metal and an ambichiral sculptured thin film. Plasmonics 9(6):1481–1489. https://doi.org/10.1007/s11468-014-9767-3

    Article  CAS  Google Scholar 

  35. Lakhtakia A, Messier R (2005) Sculptured thin films: nanoengineered morphology and optics. SPIE, USA

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deep gratitude to the University of Qom and Iran National Science Foundation (INSF) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Babaei.

Appendix A: The Transfer Matrix Method

Appendix A: The Transfer Matrix Method

The transfer matrix of the bottom, top of ECSTFs and metallic thin film can be obtained by solving the source-free Maxwell curl postulates in that regions:

$$ {\displaystyle \begin{array}{l}\underline{\nabla}\times \underline{E}\left(\underline{r}\right)= i\omega \underline{B}\left(\underline{r}\right)\\ {}\underline{\nabla}\times \underline{H}\left(\underline{r}\right)=- i\omega \underline{D}\left(\underline{r}\right)\end{array}} $$
(5)

where D and B are the displacement electric and the magnetic induction fields, respectively. The constitutive relations for D and B are as

$$ {\displaystyle \begin{array}{l}\underline{D}\left(\underline{r}\right)={\varepsilon}_0\;{\underline {\underline{\varepsilon}}}_{ECSTF}.\underline{E}\left(\underline{r}\right)\\ {}\underline{B}\left(\underline{r}\right)={\mu}_0\underline{H}\left(\underline{r}\right)\end{array}} $$
(6)

in lth arm of the ECSTF and

$$ {\displaystyle \begin{array}{l}\underline{D}\left(\underline{r}\right)={\varepsilon}_0\;{\varepsilon}_{met}\underline{E}\left(\underline{r}\right)\\ {}\underline{B}\left(\underline{r}\right)={\mu}_0\underline{H}\left(\underline{r}\right)\end{array}} $$
(7)

in metal mediums. The εmet is the metal homogenous dielectric permittivity, and the nonhomogeneous dielectric permittivity \( {\underline {\underline{\varepsilon}}}_{ECSTF} \) for lth arm of the ECSTF is defined as [12]

$$ {\underline {\underline{\varepsilon}}}_{ECSTF}={\underline {\underline{S}}}_z^T\left(\zeta \right).{\underline {\underline{S}}}_y\left(\chi \right).{\underline {\underline{\varepsilon}}}_{ref}.{\underline {\underline{S}}}_y^T\left(\chi \right).{\underline {\underline{S}}}_z\left(\zeta \right) $$
(8)

where the superscript T indicates the transpose of a dyadic, ζ = h(l − 1) (2π/Q) − γ, χ is tilt angle of the nanocolumns of the ECSTF,h =  + 1(or − 1) is the right-handedness (or left-handedness) of the ECSTF, and γ is the offset angle(the starting point for growth) of the nanocolumns of the ECSTF relative to the x axis in x-y plane. In our work, we fixed ψinc = 0° and the structure rotates in clockwise direction so that it is considered as −γ in the ζ angle (Fig. 1).

The local relative permittivity, rotation, and tilt dyadics are, respectively, as [35]

$$ {\displaystyle \begin{array}{l}{\underline {\underline{\varepsilon}}}_{ref}={\varepsilon}_a\;{\underline{u}}_z{\underline{u}}_z+{\varepsilon}_b\;{\underline{u}}_x{\underline{u}}_x+{\varepsilon}_c\;{\underline{u}}_y{\underline{u}}_y\\ {}{\underline {\underline{S}}}_z=\left(\;{\underline{u}}_x{\underline{u}}_x+{\underline{u}}_y{\underline{u}}_y\right)\;\cos \zeta +\left(\;{\underline{u}}_y{\underline{u}}_x-{\underline{u}}_x{\underline{u}}_y\right)\;\sin \zeta +{\underline{u}}_z{\underline{u}}_z\\ {}{\underline {\underline{S}}}_y=\left(\;{\underline{u}}_x{\underline{u}}_x+{\underline{u}}_z{\underline{u}}_z\right)\;\cos \chi +\left(\;{\underline{u}}_z{\underline{u}}_x-{\underline{u}}_x{\underline{u}}_z\right)\;\sin \chi +{\underline{u}}_y{\underline{u}}_y\end{array}} $$
(9)

where εa, b, c are the relative permittivity scalars.

With considering electromagnetic fields in dielectric and metal regions are as follows:

$$ {\displaystyle \begin{array}{l}\underline{E}\left(\underline{r}\right)=\underline{e}(z)\;{e}^{ikx}\\ {}\underline{H}\left(\underline{r}\right)=\underline{h}(z)\;{e}^{ikx}\end{array}} $$
(10)

and using Eqs. 57, one can obtain four ordinary differential equations and two algebraic equations. The two algebraic equations for ez and hz in ECSTF (for lth arm) and metal mediums are, respectively, as follows:

$$ {\displaystyle \begin{array}{l}{e}_z(z)=\frac{\frac{\left({\varepsilon}_a-{\varepsilon}_b\right)}{2}\sin 2\chi\;A-\frac{k}{\varepsilon_0\omega }{h}_y(z)}{B}\\ {}{h}_z(z)=\frac{k}{\mu_0\omega }{e}_y(z)\end{array}} $$
(11)

where A = (ex(z) cos ζ − ey(z) sin ζ) and B = (εacos2χ + εbsin2χ).

$$ {\displaystyle \begin{array}{l}{e}_z(z)=-\frac{k}{\varepsilon_0{\omega \varepsilon}_{met}}{h}_y(z)\\ {}{h}_z(z)=\frac{k}{\mu_0\omega }{e}_y(z)\end{array}} $$
(12)

The four ordinary differential equations can be sorted as a matrix equation:

$$ \frac{d}{dz}\left[\underline{f}(z)\right]=i\left[\underline {\underline{P}}(z)\right]\left[\underline{f}(z)\right] $$
(13)

where \( \underline{\Big[f}(z)\Big]={\left[{e}_x(z)\kern0.36em {e}_y(z)\kern0.36em {h}_x(z)\kern0.48em {h}_y(z)\;\right]}^T \) is a column vector. The \( \left[\underline {\underline{P}}(z)\right] \) is a 4 × 4 matrix, and the elements of it forlth arm of the ECSTF are

$$ {P}_{11}=\frac{k\left({\varepsilon}_a-{\varepsilon}_b\right)\cos \zeta \sin 2\chi }{2B},{P}_{12}=-{P}_{11}\tan \zeta, {P}_{14}={\mu}_0\omega -\frac{k^2}{\varepsilon_0\omega\;B},{P}_{23}=-{\mu}_0\omega, {P}_{31}={\varepsilon}_0\omega \frac{\sin 2\zeta }{2}\left(\frac{\varepsilon_a{\varepsilon}_b}{B}-{\varepsilon}_c\right),{P}_{32}=\frac{k^2}{\mu_0\omega }-{\varepsilon}_0\omega\;\left(\frac{\varepsilon_a{\varepsilon}_b{\sin}^2\zeta }{B}+{\varepsilon}_c{\cos}^2\zeta \right),{p}_{34}=-{P}_{12},{P}_{41}={\varepsilon}_0\omega \left(\frac{\varepsilon_a{\varepsilon}_b{\cos}^2\zeta }{B}+{\varepsilon}_c{\sin}^2\zeta \right),{P}_{42}=-{P}_{31},{P}_{44}={P}_{11} $$
(14)

and the other elements are zero. The elements of \( \left[\underline {\underline{P}}(z)\right] \) in metal region are

$$ {\displaystyle \begin{array}{l}{P}_{14}={\mu}_0\omega -\frac{k^2}{\varepsilon_0{\omega \varepsilon}_{met}},{P}_{23}=-{\mu}_0\omega, {P}_{32}=\frac{k^2}{\mu_0\omega }-{\varepsilon}_0{\omega \varepsilon}_{met},{P}_{41}={\varepsilon}_0{\omega \varepsilon}_{met}\\ {}\end{array}} $$
(15)

and the else elements are zero.

We now consider an ECSTF with thickness of d = N t, where t is the thickness of an arm of ECSTF and N is the number of arms. The transfer matrix of a columnar thin film with thickness of t is \( {e}^{i\;\left[\underline {\underline{P}}\right]\;t} \). Therefore, the transfer matrix of an ECSTF is [33, 34]

$$ \left[\underline {\underline{M}}\right]={\left[\underline {\underline{M}}\right]}_N\;{\left[\underline {\underline{M}}\right]}_{N-1}\dots {\left[\underline {\underline{M}}\right]}_3{\left[\underline {\underline{M}}\right]}_2{\left[\underline {\underline{M}}\right]}_1 $$
(16)

where \( {\left[\underline {\underline{M}}\right]}_l={e}^{i\;\left[{\underline {\underline{P}}}_l\right]\;t},l=1,2,\dots, N \). Then, this method can be used to obtain the transfer matrix of the bottom and top of ECSTFs in Eq. 3 (\( \left[{\underline {\underline{M}}}_b\right] \) and \( \left[{\underline {\underline{M}}}_t\right] \)). Also, easily, the transfer matrix of metal is just \( {\left[\underline {\underline{M}}\right]}_m={e}^{i\;\left[\underline {\underline{P}}\right]\;{d}_{met}} \).

By rewriting Eq. 1 as \( \left[\underline{f}\right(z=-{\left({d}_b+\frac{d_{met}}{2}\right)}_{-}\Big]=\left[\underline {\underline{K}}\left({\theta}_{inc}\right)\right]{\left[{a}_S\;{a}_P\;{r}_S\kern0.36em {r}_P\right]}^T \) in incident medium (including incident and reflected electric fields) and\( \left[\underline{f}\right(z={\left({d}_t+\frac{d_{met}}{2}\right)}_{+}\Big]=\left[\underline {\underline{K}}\left({\theta}_{tr}\right)\right]{\left[{t}_S\;{t}_P\;0\kern0.36em 0\right]}^T \)in transmitted medium, the nonzero elements of \( \left[\underline {\underline{K}}\left({\theta}_{inc}\right)\right] \) and \( \left[\underline {\underline{K}}\left({\theta}_{tr}\right)\right] \), respectively, are

$$ {K}_{12}=-{K}_{14}=-\cos {\theta}_{inc},{K}_{21}={K}_{23}=1,{K}_{31}=-{K}_{33}=\frac{n_1}{\eta {}_0}{K}_{12},{K}_{42}={K}_{44}=\frac{-{n}_1}{\eta {}_0} $$
(17)

and

$$ {K}_{12}=-{K}_{14}=-\cos {\theta}_{tr},{K}_{21}={K}_{23}=1,\kern0.36em {K}_{31}=-{K}_{33}=\frac{n_2}{\eta {}_0}{K}_{12},{K}_{42}={K}_{44}=\frac{-{n}_2}{\eta {}_0} $$
(18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseininezhad, S.H., Babaei, F. Excitation of Multiple Surface Plasmon-Polaritons by a Metal Layer Inserted in an Equichiral Sculptured Thin Film. Plasmonics 13, 1867–1879 (2018). https://doi.org/10.1007/s11468-018-0701-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0701-y

Keywords

Navigation