Skip to main content
Log in

Graphene Nanoribbon Assisted Refractometer Based Biosensor for Mid-Infrared Label-Free Analysis

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, an enhanced Fabry-Perot resonator (FPR)-based refractometer sensor is proposed using graphene nanoribbon (GNR) material to enable mid-infrared application. The FPR section consists of a three vertically aligned GNR sections: a conventional basic section placed in the middle complemented with two ending tail arms for auxiliary enhancement. To enable a real-world application of sensor, three-dimensional (3D) finite difference time domain (FDTD) simulations are performed. To apply dynamic gate bias tuning, the GNR layer is isolated from the substrate by means of a 50-nm layer of silicon dioxide (SiO2), which is placed on top of a thick bulk silicon (Si). To realize sensing application for the proposed enhanced FPR, a container is placed on FPR. Refractive index sensitivity of the sensor is calculated to be in the range of 3180–4220 nm RIU−1. To compare the superior performance of the sensor, a figure of merit (FOM) is defined and extensively investigated. The FOM of proposed sensor is found to be around 2.9–3.1 RIU−1, which is a reasonable value compared to compact-sized on-chip-intended sensors. Moreover, methods of dynamic variation of resonance wavelength are discussed, which can be useful for multi-analytic applications using spectral multiplexing of the sensor. The small footprint and its single- or multi-sensing application suggest that this enhanced FPR-assisted biosensor can be used as a lab-on-a-chip sensor for a label-free analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Vollmer F, Arnold S (2008) Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods 5(7):591–596

    Article  PubMed  CAS  Google Scholar 

  2. Kataoka-Hamai C, Miyahara Y (2011) Label-free detection of DNA by field-effect devices. IEEE Sensors J 11(12):3153–3160

    Article  CAS  Google Scholar 

  3. Rakhshani MR, Mansouri-Birjandi MA (2017) Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application. Plasmonics 12(4):999–1006

    Article  CAS  Google Scholar 

  4. Guiducci C, Stagni C, Fischetti A, Mastromatteo U, Benini L, Riccoricco B (2006) Microelectrodes on a silicon chip for label-free capacitive DNA sensing. IEEE Sensors J 6(5):1084–1093

    Article  CAS  Google Scholar 

  5. Hunt HK, Armani AM (2010) Label-free biological and chemical sensors. Nanoscale 2(9):1544–1559

    Article  PubMed  CAS  Google Scholar 

  6. Dissanayake KPW, Wu W, Nguyen H, Sun T, Grattan KT (2018) Graphene-oxide-coated long-period grating-based fiber optic sensor for relative humidity and external refractive index. J Lightwave Technol 36(4):1145–1151

    Article  CAS  Google Scholar 

  7. Tavousi A, Heidarzadeh H (2018) Realization of a multichannel drop filter using an ISO-centric all-circular photonic crystal ring resonator. Photonics Nanostruct Fundam Appl 31:52–59

    Article  Google Scholar 

  8. Zhuo Y, Cunningham BT (2015) Label-free biosensor imaging on photonic crystal surfaces. Sensors 15(9):21613–21635

    Article  PubMed  CAS  Google Scholar 

  9. Tavousi A, Mansouri-Birjandi MA (2016) Study on the similarity of photonic crystal ring resonator cavity modes and whispering-gallery-like modes in order to design more efficient optical power dividers. Photon Netw Commun 32(1):160–170

    Article  Google Scholar 

  10. Chow E, Grot A, Mirkarimi L, Sigalas M, Girolami G (2004) Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt Lett 29(10):1093–1095

    Article  PubMed  CAS  Google Scholar 

  11. Tavousi A, Rakhshani M, Mansouri-Birjandi M (2018) High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators. Opt Commun 429:166–174

    Article  CAS  Google Scholar 

  12. Densmore A, Xu DX, Waldron P, Janz S, Cheben P, Lapointe J, Delge A, Lamontagne B, Schmid JH, Post E (2006) A silicon-on-insulator photonic wire based evanescent field sensor. IEEE Photon Technol Lett 18(23):2520–2522

    Article  CAS  Google Scholar 

  13. Philip-Chandy R, Scully PJ, Eldridge P, Kadim HJ, Grapin MG, Jonca MG, D’Ambrosio MG, Colin F (2000) An optical fiber sensor for biofilm measurement using intensity modulation and image analysis. IEEE J Sel Top Quantum Electron 6(5):764–772

    Article  CAS  Google Scholar 

  14. Mishra AK, Mishra SK, Singh AP (2017) Giant infrared sensitivity of surface plasmon resonance-based refractive index sensor, Plasmonics, pp. 1–8

  15. Tavousi A, Mansouri-Birjandi MA, Ghadrdan M, Ranjbar-Torkamani M (2017) Application of photonic crystal ring resonator nonlinear response for full-optical tunable add–drop filtering. Photon Netw Commun 34(1):131–139

    Article  Google Scholar 

  16. Wang F, Anderson M, Bernards MT, Hunt HK (2015) Peg functionalization of whispering gallery mode optical microresonator biosensors to minimize non-specific adsorption during targeted, label-free sensing. Sensors 15(8):18040–18060

    Article  PubMed  Google Scholar 

  17. Reynolds T, François A, Riesen N, Turvey ME, Nicholls SJ, Hoffmann P, Monro TM (2016) Dynamic self-referencing approach to whispering gallery mode biosensing and its application to measurement within undiluted serum. Anal Chem 88(7):4036–4040

    Article  PubMed  CAS  Google Scholar 

  18. Al-Attili AZ et al (2015) Whispering gallery mode resonances from Ge micro-disks on suspended beams. Front Mater 2:43

    Article  Google Scholar 

  19. Tavousi A, Mansouri-Birjandi MA (2015) Performance evaluation of photonic crystal ring resonators based optical channel add-drop filters with the aid of whispering gallery modes and their Q-factor. Opt Quant Electron 47(7):1613–1625

    Article  CAS  Google Scholar 

  20. Ahmadi H, Heidarzadeh H, Taghipour A, Rostami A, Baghban H, Dolatyari M, Rostami G (2014) Evaluation of single virus detection through optical biosensor based on microsphere resonator. Optik 125(14):3599–3602

    Article  CAS  Google Scholar 

  21. Ladam G, Schaad P, Voegel J, Schaaf P, Decher G, Cuisinier F (2000) In situ determination of the structural properties of initially deposited polyelectrolyte multilayers. Langmuir 16(3):1249–1255

    Article  CAS  Google Scholar 

  22. Tünnemann R, Mehlmann M, Süssmuth RD, Bühler B, Pelzer S, Wohlleben W, Fiedler HP, Wiesmüller KH, Gauglitz G, Jung G (2001) Optical biosensors. Monitoring studies of glycopeptide antibiotic fermentation using white light interference. Anal Chem 73(17):4313–4318

    Article  PubMed  Google Scholar 

  23. Chang K, Chen R, Wang S, Li J, Hu X, Liang H, Cao B, Sun X, Ma L, Zhu J, Jiang M, Hu J (2015) Considerations on circuit design and data acquisition of a portable surface plasmon resonance biosensing system. Sensors 15(8):20511–20523

    Article  PubMed  Google Scholar 

  24. Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4:299–304

    Article  CAS  Google Scholar 

  25. Tu H, Sun T, Grattan KT (2013) SPR-based optical fiber sensors using gold–silver alloy particles as the active sensing material. IEEE Sensors J 13(6):2192–2199

    Article  CAS  Google Scholar 

  26. Slavík R, Homola J (2007) Ultrahigh resolution long range surface plasmon-based sensor. Sensors Actuators B Chem 123(1):10–12

    Article  Google Scholar 

  27. Chamanzar M, Soltani M, Momeni B, Yegnanarayanan S, Adibi A (2010) Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications. Appl Phys B 101(1–2):263–271

    Article  CAS  Google Scholar 

  28. Wohltjen H et al. (1997) Acoustic wave sensor—theory, design, and physico-chemical applications, Academic, New York

  29. Länge K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391(5):1509–1519

    Article  PubMed  Google Scholar 

  30. Wu L, Jia Y, Jiang L, Guo J, Dai X, Xiang Y, Fan D (2017) Sensitivity improved SPR biosensor based on the mos 2/graphene–aluminum hybrid structure. J Lightwave Technol 35(1):82–87

    Article  CAS  Google Scholar 

  31. Mishra AK, Mishra SK, Verma RK (2016) Graphene and beyond graphene MoS2: a new window in surface-plasmon-resonance-based fiber optic sensing. J Phys Chem C 120(5):2893–2900

    Article  CAS  Google Scholar 

  32. Mirzaei Y, Rostami G, Dolatyari M, Rostami A (2015) Investigation of efficient mathematical permittivity modeling for modal analysis of plasmonics layered structures. Optik 126(3):323–327

    Article  CAS  Google Scholar 

  33. Tavousi A, Rostami A, Rostami G, Dolatyari M (2015) 3-D numerical analysis of Smith–Purcell-based terahertz wave radiation excited by effective surface plasmon. J Lightwave Technol 33(22):4640–4647

    Article  Google Scholar 

  34. Fischer B, Walther M, Jepsen PU (2002) Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Phys Med Biol 47(21):3807–3814

    Article  PubMed  CAS  Google Scholar 

  35. Zangeneh-Nejad F, Safian R (2016) A graphene-based THz ring resonator for label-free sensing. IEEE Sensors J 16(11):4338–4344

    Article  CAS  Google Scholar 

  36. Tavousi A, Rostami A, Rostami G, Dolatyari M (2017) Proposal for simultaneous two-color Smith–Purcell terahertz radiation through effective surface plasmon excitation. IEEE J Sel Top Quantum Electron 23(4):1–9

    Article  Google Scholar 

  37. Wang K, Mittleman DM (2004) Metal wires for terahertz wave guiding. Nature 432(7015):376–379

    Article  PubMed  CAS  Google Scholar 

  38. Gu X, Lin I-T, Liu J-M (2013) Extremely confined terahertz surface plasmon-polaritons in graphene-metal structures. Appl Phys Lett 103(7):071103

    Article  Google Scholar 

  39. Maier SA, Andrews SR, Martin-Moreno L, Garcia-Vidal F (2006) Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys Rev Lett 97(17):176805

    Article  PubMed  Google Scholar 

  40. Riedl C, Coletti C, Starke U (2010) Structural and electronic properties of epitaxial graphene on SiC (0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation. J Phys D Appl Phys 43(37):374009

    Article  Google Scholar 

  41. Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332(6035):1291–1294

    Article  CAS  Google Scholar 

  42. Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8(2):1086–1101

    Article  PubMed  CAS  Google Scholar 

  43. Tamagnone M, Gomez-Diaz J, Mosig J, Perruisseau-Carrier J (2012) Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets. J Appl Phys 112(11):114915

    Article  Google Scholar 

  44. Christensen J, Manjavacas A, Thongrattanasiri S, Koppens FH, García de Abajo FJ (2011) Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6(1):431–440

    Article  PubMed  Google Scholar 

  45. Raza H (2012) Graphene nanoelectronics: metrology, synthesis, properties and applications. Springer Science & Business Media

  46. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6):064302

    Article  Google Scholar 

  47. Siahsar M, Dolatyari M, Rostami A, Rostami G (2017) Surface-modified graphene for mid-infrared detection, in Graphene Materials-Advanced Applications: InTech

    Google Scholar 

  48. Asgari S, Granpayeh N (2017) Tunable plasmonic dual wavelength multi/demultiplexer based on graphene sheets and cylindrical resonator. Opt Commun 393:5–10

    Article  CAS  Google Scholar 

  49. Asgari S, Dolatabady A, Granpayeh N (2017) Tunable midinfrared wavelength selective structures based on resonator with antisymmetric parallel graphene pair. Opt Eng 56(6):067102–067102

    Article  Google Scholar 

  50. Tavousi A, Mansouri-Birjandi MA, Janfaza M (2018) Optoelectronic application of graphene nanoribbon for mid-infrared bandpass filtering. Appl Opt 57(20):5800–5805

    Article  PubMed  CAS  Google Scholar 

  51. Fei Z, Rodin AS, Andreev GO, Bao W, McLeod AS, Wagner M, Zhang LM, Zhao Z, Thiemens M, Dominguez G, Fogler MM, Neto AHC, Lau CN, Keilmann F, Basov DN (2012) Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487(7405):82–85

    Article  PubMed  CAS  Google Scholar 

  52. Janfaza M, Mansouri-Birjandi MA, Tavousi A (2017) Tunable plasmonic band-pass filter based on Fabry–Perot graphene nanoribbons. Appl Phys B 123(10):262

    Article  Google Scholar 

  53. Janfaza M, Mansouri-Birjandi MA, Tavousi A (2018) Tunable plasmon-induced reflection based on graphene nanoribbon Fabry-Perot resonator and nanodisks. Opt Mater 84:675–680

    Article  CAS  Google Scholar 

  54. Janfaza M, Mansouri-Birjandi MA, Tavousi A (2018) Dynamic switching between single and double plasmon induced reflection through graphene nanoribbons based structure. Mater Res Express 5(11):115022

    Article  Google Scholar 

  55. Tavousi A, Mansouri-Birjandi MA, Janfaza M (2018) Tuning contrivances of graphene Nano-ribbon based mid-infrared band-pass filter, Electrical Engineering (ICEE), Iranian Conference on, Mashhad, pp. 220–223.doi: https://doi.org/10.1109/ICEE.2018.8472719

  56. Qi Z-M, Wei M, Matsuda H, Honma I, Zhou H (2007) Broadband surface plasmon resonance spectroscopy for determination of refractive-index dispersion of dielectric thin films. Appl Phys Lett 90(18):181112

    Article  Google Scholar 

  57. Zangeneh-Nejad F, Safian R (2016) Hybrid graphene–molybdenum disulphide based ring resonator for label-free sensing. Opt Commun 371:9–14

    Article  CAS  Google Scholar 

  58. Ren M, Pan C, Li Q, Cai W, Zhang X, Wu Q, Fan S, Xu J (2013) Isotropic spiral plasmonic metamaterial for sensing large refractive index change. Opt Lett 38(16):3133–3136

    Article  PubMed  Google Scholar 

  59. Zafar R, Salim M (2015) Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor. IEEE Sensors J 15(11):6313–6317

    Article  CAS  Google Scholar 

  60. Dolatabady A, Granpayeh N, Nezhad VF (2013) A nanoscale refractive index sensor in two dimensional plasmonic waveguide with nanodisk resonator. Opt Commun 300:265–268

    Article  CAS  Google Scholar 

  61. Rakhshani MR, Tavousi A, Mansouri-Birjandi MA (2018) Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring. Appl Opt 57(27):7798–7804

    Article  PubMed  CAS  Google Scholar 

  62. Cong L, Tan S, Yahiaoui R, Yan F, Zhang W, Singh R (2015) Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: a comparison with the metasurfaces. Appl Phys Lett 106(3):031107

    Article  Google Scholar 

  63. Sherry LJ, Jin R, Mirkin CA, Schatz GC, Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6(9):2060–2065

    Article  PubMed  CAS  Google Scholar 

  64. Slavík R, Homola J, Čtyroký J, Brynda E (2001) Novel spectral fiber optic sensor based on surface plasmon resonance. Sensors Actuators B Chem 74(1):106–111

    Article  Google Scholar 

  65. Cao W, Singh R, Al-Naib IA, He M, Taylor AJ, Zhang W (2012) Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. Opt Lett 37(16):3366–3368

    Article  PubMed  CAS  Google Scholar 

  66. Krioukov E, Klunder D, Driessen A, Greve J, Otto C (2002) Sensor based on an integrated optical microcavity. Opt Lett 27(7):512–514

    Article  PubMed  CAS  Google Scholar 

  67. Yalcin A, Popat KC, Aldridge JC, Desai TA, Hryniewicz J, Chbouki N, Little BE, Oliver King, van V, Sai Chu, Gill D, Anthes-Washburn M, Unlu MS, Goldberg BB (2006) Optical sensing of biomolecules using microring resonators. IEEE J Sel Top Quantum Electron 12(1):148–155

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Mansouri-Birjandi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavousi, A., Mansouri-Birjandi, M.A. & Janfaza, M. Graphene Nanoribbon Assisted Refractometer Based Biosensor for Mid-Infrared Label-Free Analysis. Plasmonics 14, 1207–1217 (2019). https://doi.org/10.1007/s11468-019-00909-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00909-w

Keywords

Navigation