Skip to main content
Log in

Quantum Level Instability of Transverse Excitation in Electron Flow

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In current research, we use the effective Schrödinger-Poisson model to study a new kind of quantum-level instability in an infinite-wall slab electron flow. We use the Madelung fluid representation along with the conventional eigenvalue problem techniques in order to solve the linearized coupled differential equations representing the linear transverse collective excitations in the electron gas of arbitrary degree of degeneracy having a constant perpendicular drift. It is shown that the energy levels of collective electrostatic excitations are doubly quantized due to mutual interactions between single electron oscillations, analogous to the problem of a particle in a box, and collective Langmuir oscillations, which are modulated over single electron quantum state. We also report the transverse excitation instability of plasmon energy level in electron slab flow due to the interplay between the wave-like dispersion and the destabilizing perpendicular electron drift momentum. We further study in detail the parametric dependence of such instability in terms of different aspects of the many-electron system. Such a quantum-level instability may have important applications in characteristic behavior of plasmonic devices and their frequency response. Parametric quantization of drifting electron fluid may also have broad applications in nanoscale quantum device calibration and quantum measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Chen FF (1984) Introduction to plasma physics and controlled fusion, 2nd edn. Plenum Press, New York, London

    Book  Google Scholar 

  2. Krall NA, Trivelpeice AW (1986) Principles of plasma physics. San francisco Press, San francisco

    Google Scholar 

  3. Drazin PG, Johnson RS (1993) Solitons: an introduction. Cambridge Texts in Applied Mathematics, Cambridge University Press

  4. Stenflo L, Tsintsadze NL (1979) Astrophys Space Sci 64:513

  5. Stenflo L (1981) Phys Scripta 23:779

  6. Stenflo L, Shukla PK (1999) Phys Plasmas 6:1382

  7. Bonitz M, Semkat D, Filinov A, Golubnychyi V, Kremp D, Gericke DO, Murillo MS, Filinov V, Fortov V, Hoyer W (2003) J Phys A 36:5921

  8. Markovich PA, Ringhofer CA, Schmeister C (1990) Semiconductor equations. Springer, Berlin

  9. Shukla PK, Eliasson B (2010) Nonlinear aspects of quantum plasma physics. Phys Usp 53:76

  10. Stenflo L, Brodin G (2010) J Phys Plasmas 76:261

  11. Manfredi G (2005) “How to model quantum plasmas. Fields Inst Commun 46, 263-287 (2005); In Proceedings of the Workshop on Kinetic Theory (The Fields Institute, Toronto, Canada 2004). http://arxiv.org/abs/quant--ph/0505004

  12. Ichimaru S (1982) Strongly coupled plasmas: high-density classical plasmas and degenerate electron liquids. Rev Mod Phys 54:1017. https://doi.org/10.1103/RevModPhys.54.1017

    Article  CAS  Google Scholar 

  13. Ichimaru S, Iyetomi H, Tanaka S (1987) Statistical physics of dense plasmas: thermodynamics, transport coefficients and dynamic correlations. Phys Rep 149:91. https://doi.org/10.1016/0370-1573(87)90125-6

    Article  Google Scholar 

  14. Ichimaru S (1994) Statistical physics: condensed plasmas. Addison Wesely, New York

    Google Scholar 

  15. Gardner C (1994) The quantum hydrodynamic model for semiconductor devices, SIAM. J Appl Math 54:409

    Google Scholar 

  16. Manfredi G (2018) Preface to special topic: plasmonics and solid state plasmas. Phys Plasmas 25. https://doi.org/10.1063/1.5026653

  17. Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science Business Media LLC

  18. Haug H, Koch SW (2004) Quantum theory of the optical and electronic properties of semiconductors. World Scientific

  19. Ummethala S, Harter T, Koehnle K et al (2019) THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat Photonics 13:519. https://doi.org/10.1038/s41566-019-0475-6

    Article  CAS  Google Scholar 

  20. Hu C (2010) Modern semiconductor devices for integrated circuits, 1st edn. Prentice Hall, Upper Saddle River, New Jersey

  21. Seeger K (2004) Semiconductor physics, 9th edn. Springer, Berlin

  22. Atwater HA (2007) The promise of plasmonics. Sci Am 296:56. https://doi.org/10.1038/scientificamerican0407-56

  23. Kittel C (1996) Introduction to solid state physics, 7th edn. John Wiely and Sons, New York

  24. Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College Publishing, Orlando

  25. Yofee AD (1993) Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv Phys 42:173–262. https://doi.org/10.1080/00018739300101484

    Article  Google Scholar 

  26. Calvero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photonic 8:95. https://doi.org/10.1038/nphoton.2013.238

  27. Jacob B (2020) Khurgin. Fundamental limits of hot carrier injection from metal in nanoplasmonics. Nanophotonics 9(2):453. https://doi.org/10.1515/nanoph-2019-0396

  28. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205. https://doi.org/10.1038/nmat2629

  29. Tian Y, Tatsuma T (2005) Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc 127:7632. https://doi.org/10.1021/ja042192u

  30. Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza AZ, Camara N, F. de Abajo FJG, Hillenbrand R, Frank H. L. Koppens FHL (2012) Optical nano-imaging of gate-tunable graphene plasmons. Nat 487:77. https://doi.org/10.1038/nature11254

  31. Fei Z, Rodin AS, Andreev GO, Bao W, McLeod AS, Wagner M, Zhang LM, Zhao Z, Thiemens M, Dominguez G, Fogler MM, Castro Neto AH, Lau CN, Keilmann F, Basov DN (2012) Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nat 487:82. https://doi.org/10.1038/nature11253

  32. Yan H, Low T, Zhu W, Yanqing W, Freitag M, Li X, Guinea F, Avouris P, Xia F (2013) Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photonics 7:394. https://doi.org/10.1038/nphoton.2013.57

  33. Mu X, Sun M (2020) Interfacial charge transfer exciton enhanced by plasmon in 2D in-plane lateral and van der Waals heterostructures. Appl Phys Lett 117, 091601. https://doi.org/10.1063/5.0018854

  34. Yang R, Cheng Y, Sun M (2021) Aluminum plasmon-enhanced deep ultraviolet fluorescence resonance energy transfer in h-BN/graphene heterostructure. Optics Comm 498. https://doi.org/10.1016/j.optcom.2021.127224

  35. Jianuo F, Jizhe S, Yuqing C, Mengtao S (2021) Pressure-dependent interfacial charge transfer excitons in WSe2-MoSe2 heterostructures in near infrared region. Results in Physics 24:104110. https://doi.org/10.1016/j.rinp.2021.104110

  36. Miller HR, Witta PJ (1987) Active galetic nuclei. Springer-Verlag, Berlin, p 202

  37. Goldreich P, Julian WH (1969) Astrophys J 157:869

  38. Michel FC (1982) Rev Mod Phys 54:1

  39. Tandberg-Hansen E, Emshie AG (1988) The physics of solar flares. Cambridge Univ. Press, Cambridge, p 124

  40. Rees MJ (1983). In: Gibbons GB, Hawking SW, Siklas S (eds) The very early universe. Cambridge Univ. Press, Cambridge

  41. Misner W, Throne KS, Wheeler JA (1973) Gravitation. Freeman, San Francisco, p 763

    Google Scholar 

  42. Chandrasekhar S (1939) An introduction to the study of stellar structure. Chicago, Ill. , (The University of Chicago press), p 392

  43. Madelung E (1926) Z Phys 40:322

  44. Fermi E, Teller E (1947) Phys Rev 72:399

  45. Hoyle F, Fowler WA (1960) Astrophys J 132:565

  46. Chandrasekhar S (1953) Mon Not R Astron Soc 113:667

  47. Chandrasekhar S (1984) Science 226:4674

  48. Bohm D, Pines D (1953) Phys Rev 92:609

  49. Bohm D (1952) Phys Rev 85:166–179

  50. Bohm D (1952) Phys Rev 85:180–193

  51. Pines D (1953) Phys Rev 92:609

  52. Levine P, Roos OV (1962) Phys Rev 125:207

  53. Klimontovich Y, Silin VP (1961) In Plasma physics, edited by J. E. Drummond (McGraw-Hill, New York)

  54. Takabayasi T (1952) Prog Theor Phys 8:143

  55. Takabayasi T (1955) Prog Theor Phys 14:283

  56. Takabayasi T, Vigier JP (1957) Prog Theor Phys 18:573

  57. Takabayasi T (1953) Prog Theor Phys 9:187

  58. Takabayasi T (1958) Nuovo Cim 7:118

  59. Castro C, Mahencha J (2006) Prog Phys 1:38

  60. Castro C (1990) J Math Phys 31:2633

  61. Castro C (1991) Found Phys Lett 4:81

  62. Castro C (1992) Found Phys 4:569

  63. Lindhard J (1954) Dan Mat Fys Medd 28(8):1

  64. Haas F (2011) Quantum plasmas: an hydrodynamic approach. Springer, New York

  65. Haas F, Manfredi G, Shukla PK, Hervieux P-A (2009) Phys Rev B 80:073301

  66. Shukla PK, Eliasson B (2007) Phys Rev Lett 99:096401

  67. Stenflo L (1994) Phys Scr T50 15

  68. Shukla PK, Eliasson B, Stenflo L (2012) Phys Rev E 86:016403

  69. Brodin G, Marklund M (2007) New J Phys 9:277

  70. Marklund M, Brodin G (2007) Phys Rev Lett 98:025001

  71. Crouseilles N, Hervieux PA, Manfredi G (2008) Phys Rev B 78:155412

  72. Moldabekov Z, Schoof T, Ludwig P, Bonitz M, Ramazanov T (2015) Phys Plasmas 22:102104. https://doi.org/10.1063/1.4932051

  73. Stanton L, Murillo MS (2015) Phys Rev E 91:033104

  74. Hurst J, Simon KL, Hervieux PA, Manfredi G, Haas F (2016) Phys Rev B 93:205402

  75. Eliasson B, Shukla PK (2008) Phys Scr 78:025503

  76. Kim Hwa-Min, Jung Young-Dae (2007) EPL 79:25001

  77. Akbari-Moghanjoughi M (2019) Phys Plasmas 26, 012104. https://doi.org/10.1063/1.5078740

  78. Manfredi G, Haas F (2001) Phys Rev B 64:075316

  79. Akbari-Moghanjoughi M (2015) Phys Plasmas 22, 022103 (2015); ibid 22, 039904 (E)

  80. Akbari-Moghanjoughi M (2019) Phys Plasmas 26:052104. https://doi.org/10.1063/1.5080347

  81. Akbari-Moghanjoughi M (2019) Phys Plasmas 26:062105. https://doi.org/10.1063/1.5090366

  82. Akbari-Moghanjoughi M (2019) Phys Plasmas 26:062110. https://doi.org/10.1063/1.5098054

  83. Akbari-Moghanjoughi M (2019) Phys Plasmas 26:072106. https://doi.org/10.1063/1.5097144

  84. Akbari-Moghanjoughi M (2021) Sci Rep 11:21099

  85. Fetter AL (1985) Phys Rev B 32:7676

  86. Akbari-Moghanjoughi M (2021) Phys Plasmas 28:022109. https://doi.org/10.1063/5.0039067

  87. Eliasson B, Akbari-Moghanjoughi M (2016) Phys Lett A 380:2518. https://doi.org/10.1016/j.physleta.2016.05.043

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. Akbari-Moghanjoughi is the only contributing author to this research.

Corresponding author

Correspondence to M. Akbari-Moghanjoughi.

Ethics declarations

Competing Interests

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari-Moghanjoughi, M. Quantum Level Instability of Transverse Excitation in Electron Flow. Plasmonics 17, 2285–2295 (2022). https://doi.org/10.1007/s11468-022-01712-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01712-w

Keyword

Mathematics Subject Classification

Navigation