Skip to main content

Advertisement

Log in

Early Events of HIV-1 Infection: Can Signaling be the Next Therapeutic Target?

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Intracellular signaling events are signposts of biological processes, which govern the direction and action of biological activities. Through millions of years of evolution, pathogens, such as viruses, have evolved to hijack host cell machinery to infect their targets and are therefore dependent on host cell signaling for replication. This review will detail our current understanding of the signaling events that are important for the early steps of HIV-1 replication. More specifically, the therapeutic potential of signaling events associated with chemokine coreceptors, virus entry, viral synapses, and post-entry processes will be discussed. We argue that these pathways may represent novel targets for antiviral therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albanese A, Arosio D, Terreni M, Cereseto A (2008) HIV-1 pre-integration complexes selectively target decondensed chromatin in the nuclear periphery. PLoS ONE 3:e2413

    Article  PubMed  CAS  Google Scholar 

  • Alfano M, Schmidtmayerova H, Amella CA, Pushkarsky T, Bukrinsky M (1999) The B-oligomer of pertussis toxin deactivates CC chemokine receptor 5 and blocks entry of M-tropic HIV-1 strains. J Exp Med 190:597–605

    Article  PubMed  CAS  Google Scholar 

  • Alkhatib G, Combardiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA (1996) CC CKR5: a Rantes, MIP-1a, MIP-1b receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272:1955–1958

    Article  PubMed  CAS  Google Scholar 

  • Alkhatib G, Locati M, Kennedy PE, Murphy PM, Berger EA (1997) HIV-1 coreceptor activity of CCR5 and its inhibition by chemokines: independence from G protein signaling and importance of coreceptor downmodulation. Virology 234:340–348

    Article  PubMed  CAS  Google Scholar 

  • Aloia RC, Jensen FC, Curtain CC, Mobley PW, Gordon LM (1988) Lipid composition and fluidity of the human immunodeficiency virus. Proc Natl Acad Sci USA 85:900–904

    Article  PubMed  CAS  Google Scholar 

  • Aloia RC, Tian H, Jensen FC (1993) Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc Natl Acad Sci USA 90:5181–5185

    Article  PubMed  CAS  Google Scholar 

  • Amara A, Gall SL, Schwartz O, Salamero J, Montes M, Loetscher P, Baggiolini M, Virelizier JL, Arenzana-Seisdedos F (1997) HIV coreceptor downregulation as antiviral principle: SDF-1alpha-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. J Exp Med 186:139–146

    Article  PubMed  CAS  Google Scholar 

  • Amara A, Vidy A, Boulla G, Mollier K, Garcia-Perez J, Alcami J, Blanpain C, Parmentier M, Virelizier JL, Charneau P et al (2003) G protein-dependent CCR5 signaling is not required for efficient infection of primary T lymphocytes and macrophages by R5 human immunodeficiency virus type 1 isolates. J Virol 77:2550–2558

    Article  PubMed  CAS  Google Scholar 

  • Archin NM, Keedy KS, Espeseth A, Dang H, Hazuda DJ, Margolis DM (2009) Expression of latent human immunodeficiency type 1 is induced by novel and selective histone deacetylase inhibitors. AIDS 23:1799–1806

    Article  PubMed  CAS  Google Scholar 

  • Arhel N, Genovesio A, Kim KA, Miko S, Perret E, Olivo-Marin JC, Shorte S, Charneau P (2006) Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nat Meth 3:817–824

    Article  CAS  Google Scholar 

  • Arhel NJ, Souquere-Besse S, Munier S, Souque P, Guadagnini S, Rutherford S, Prevost MC, Allen TD, Charneau P (2007) HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore. EMBO J 26:3025–3037

    Article  PubMed  CAS  Google Scholar 

  • Arthos J, Rubbert A, Rabin RL, Cicala C, Machado E, Wildt K, Hanbach M, Steenbeke TD, Swofford R, Farber JM et al (2000) CCR5 signal transduction in macrophages by human immunodeficiency virus and simian immunodeficiency virus envelopes. J Virol 74:6418–6424

    Article  PubMed  CAS  Google Scholar 

  • Arts EJ, Wainberg MA (1996) Human immunodeficiency virus type 1 reverse transcriptase and early events in reverse transcription. Adv Virus Res 46:97–163

    Article  PubMed  CAS  Google Scholar 

  • Auewarakul P, Wacharapornin P, Srichatrapimuk S, Chutipongtanate S, Puthavathana P (2005) Uncoating of HIV-1 requires cellular activation. Virology 337:93–101

    Article  PubMed  CAS  Google Scholar 

  • Balabanian K, Harriague J, Decrion C, Lagane B, Shorte S, Baleux F, Virelizier JL, Arenzana-Seisdedos F, Chakrabarti LA (2004) CXCR4-tropic HIV-1 envelope glycoprotein functions as a viral chemokine in unstimulated primary CD4+ T lymphocytes. J Immunol 173:7150–7160

    PubMed  CAS  Google Scholar 

  • Barrero-Villar M, Cabrero JR, Gordon-Alonso M, Barroso-Gonzalez J, Alvarez-Losada S, Munoz-Fernandez MA, Sanchez-Madrid F, Valenzuela-Fernandez A (2009) Moesin is required for HIV-1-induced CD4-CXCR4 interaction, F-actin redistribution, membrane fusion and viral infection in lymphocytes. J Cell Sci 122:103–113

    Article  PubMed  CAS  Google Scholar 

  • Bieniasz PD, Cullen BR (1998) Chemokine receptors and human immunodeficiency virus infection. Front Biosci 3:d44–d58

    PubMed  CAS  Google Scholar 

  • Blaak H, van’t Wout AB, Brouwer M, Hooibrink B, Hovenkamp E, Schuitemaker H (2000) In vivo HIV-1 infection of CD45RA(+)CD4(+) T cells is established primarily by syncytium-inducing variants and correlates with the rate of CD4(+) T cell decline. Proc Natl Acad Sci USA 97:1269–1274

    Article  PubMed  CAS  Google Scholar 

  • Blankson JN, Bailey JR, Thayil S, Yang HC, Lassen K, Lai J, Gandhi SK, Siliciano JD, Williams TM, Siliciano RF (2007) Isolation and characterization of replication-competent human immunodeficiency virus type 1 from a subset of elite suppressors. J Virol 81:2508–2518

    Article  PubMed  CAS  Google Scholar 

  • Bleul CC, Farzan M, Choe H, Parolin C, Clark-Lewis I, Sodroski J, Springer TA (1996) The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382:829–833

    Article  PubMed  CAS  Google Scholar 

  • Bleul CC, Wu L, Hoxie JA, Springer TA, Mackay CR (1997) The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci USA 94:1925–1930

    Article  PubMed  CAS  Google Scholar 

  • Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science 319:921–926

    Article  PubMed  CAS  Google Scholar 

  • Brasseur R, Cornet B, Burny A, Vandenbranden M, Ruysschaert JM (1988) Mode of insertion into a lipid membrane of the N-terminal HIV gp41 peptide segment. AIDS Res Hum Retroviruses 4:83–90

    Article  PubMed  CAS  Google Scholar 

  • Bretscher MS (1996) Getting membrane flow and the cytoskeleton to cooperate in moving cells. Cell 87:601–606

    Article  PubMed  CAS  Google Scholar 

  • Bretscher A (1999) Regulation of cortical structure by the ezrin–radixin–moesin protein family. Curr Opin Cell Biol 11:109–116

    Article  PubMed  CAS  Google Scholar 

  • Briggs JA, Simon MN, Gross I, Krausslich HG, Fuller SD, Vogt VM, Johnson MC (2004) The stoichiometry of Gag protein in HIV-1. Nat Struct Mol Biol 11:672–675

    Article  PubMed  CAS  Google Scholar 

  • Brugger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, Krausslich HG (2006) The HIV lipidome: a raft with an unusual composition. Proc Natl Acad Sci USA 103:2641–2646

    Article  PubMed  CAS  Google Scholar 

  • Bukrinskaya A, Brichacek B, Mann A, Stevenson M (1998) Establishment of a functional human immunodeficiency virus type 1 (HIV-1) reverse transcription complex involves the cytoskeleton. J Exp Med 188:2113–2125

    Article  PubMed  CAS  Google Scholar 

  • Bukrinsky MI, Sharova N, McDonald TL, Pushkarskaya T, Tarpley WG, Stevenson M (1993) Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc Natl Acad Sci USA 90:6125–6129

    Article  PubMed  CAS  Google Scholar 

  • Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    Article  PubMed  CAS  Google Scholar 

  • Bushman FD, Malani N, Fernandes J, D’Orso I, Cagney G, Diamond TL, Zhou H, Hazuda DJ, Espeseth AS, Konig R et al (2009) Host cell factors in HIV replication: meta-analysis of genome-wide studies. PLoS Pathog 5:e1000437

    Article  PubMed  CAS  Google Scholar 

  • Buzon MJ, Massanella M, Llibre JM, Esteve A, Dahl V, Puertas MC, Gatell JM, Domingo P, Paredes R, Sharkey M et al (2010) HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat Med 16:460–465

    Article  PubMed  CAS  Google Scholar 

  • Cameron PU, Al E (1992) Dendritic cells exposed to human immunodeficiency virus-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science 257:383–386

    Article  PubMed  CAS  Google Scholar 

  • Cameron PU, Saleh S, Sallmann G, Solomon A, Wightman F, Evans VA, Boucher G, Haddad EK, Sekaly RP, Harman AN et al (2010) Establishment of HIV-1 latency in resting CD4+ T cells depends on chemokine-induced changes in the actin cytoskeleton. Proc Natl Acad Sci USA 107:16934–16939

    Article  PubMed  CAS  Google Scholar 

  • Campbell SM, Crowe SM, Mak J (2001) Lipid rafts and HIV-1: from viral entry to assembly of progeny virions. J Clin Virol 22:217–227

    Article  PubMed  CAS  Google Scholar 

  • Campbell SM, Crowe SM, Mak J (2002) Virion-associated cholesterol is critical for the maintenance of HIV-1 structure and infectivity. AIDS 16:2253–2261

    Article  PubMed  CAS  Google Scholar 

  • Campbell S, Gaus K, Bittman R, Jessup W, Crowe S, Mak J (2004) The raft-promoting property of virion-associated cholesterol, but not the presence of virion-associated brij 98 rafts, is a determinant of human immunodeficiency virus type 1 infectivity. J Virol 78:10556–10565

    Article  PubMed  CAS  Google Scholar 

  • Campbell EM, Perez O, Melar M, Hope TJ (2007) Labeling HIV-1 virions with two fluorescent proteins allows identification of virions that have productively entered the target cell. Virology 360:286–293

    Article  PubMed  CAS  Google Scholar 

  • Carr JM, Hocking H, Li P, Burrell CJ (1999) Rapid and efficient cell-to-cell transmission of human immunodeficiency virus infection from monocyte-derived macrophages to peripheral blood lymphocytes. Virology 265:319–329

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Hubner W, Spinelli MA, Chen BK (2007) Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses. J Virol 81:12582–12595

    Article  PubMed  CAS  Google Scholar 

  • Chishti AH, Kim AC, Marfatia SM, Lutchman M, Hanspal M, Jindal H, Liu SC, Low PS, Rouleau GA, Mohandas N et al (1998) The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci 23:281–282

    Article  PubMed  CAS  Google Scholar 

  • Cho MW, Lee MK, Carney MC, Berson JF, Doms RW, Martin MA (1998) Identification of determinants on a dualtropic human immunodeficiency virus type 1 envelope glycoprotein that confer usage of CXCR4. J Virol 72:2509–2515

    PubMed  CAS  Google Scholar 

  • Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, Wu L, Mackay CR, LaRosa G, Newman W et al (1996) The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85:1135–1148

    Article  PubMed  CAS  Google Scholar 

  • Chun TW, Engel D, Mizell SB, Hallahan CW, Fischette M, Park S, Davey RT Jr, Dybul M, Kovacs JA, Metcalf JA et al (1999) Effect of interleukin-2 on the pool of latently infected, resting CD4+ T cells in HIV-1-infected patients receiving highly active anti-retroviral therapy. Nat Med 5:651–655

    Article  PubMed  CAS  Google Scholar 

  • Colman PM, Lawrence MC (2003) The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol 4:309–319

    Article  PubMed  CAS  Google Scholar 

  • Daecke J, Fackler OT, Dittmar MT, Krausslich HG (2005) Involvement of clathrin-mediated endocytosis in human immunodeficiency virus type 1 entry. J Virol 79:1581–1594

    Article  PubMed  CAS  Google Scholar 

  • Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:763–767

    Article  PubMed  CAS  Google Scholar 

  • Davis CB, Dikic I, Unutmaz D, Hill CM, Arthos J, Siani MA, Thompson DA, Schlessinger J, Littman DR (1997) Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5. J Exp Med 186:1793–1798

    Article  PubMed  CAS  Google Scholar 

  • Del Corno M, Liu QH, Schols D, de Clercq E, Gessani S, Freedman BD, Collman RG (2001) HIV-1 gp120 and chemokine activation of Pyk2 and mitogen-activated protein kinases in primary macrophages mediated by calcium-dependent, pertussis toxin-insensitive chemokine receptor signaling. Blood 98:2909–2916

    Article  PubMed  Google Scholar 

  • Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM et al (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666

    Article  PubMed  CAS  Google Scholar 

  • Dimitrov DS, Willey RL, Sato H, Chang L-J, Blumenthal R, Martin MA (1993) Quantitation of human immunodeficiency virus type 1 infection kinetics. J Virol 67:2182–2190

    PubMed  CAS  Google Scholar 

  • Dimitrov AS, Xiao X, Dimitrov DS, Blumenthal R (2001) Early intermediates in HIV-1 envelope glycoprotein-mediated fusion triggered by CD4 and co-receptor complexes. J Biol Chem 276:30335–30341

    Article  PubMed  CAS  Google Scholar 

  • Dinoso JB, Kim SY, Wiegand AM, Palmer SE, Gange SJ, Cranmer L, O’Shea A, Callender M, Spivak A, Brennan T et al (2009) Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy. Proc Of The Natl Acad Of Sci Of The US Of Am 106:9403–9408

    Article  CAS  Google Scholar 

  • Doms RW, Moore JP (2000) HIV-1 membrane fusion: targets of opportunity. J Cell Biol 151:F9–F14

    Article  PubMed  CAS  Google Scholar 

  • Doms RW, Trono D (2000) The plasma membrane as a combat zone in the HIV battlefield. Genes And Dev 14:2677–2688

    Article  PubMed  CAS  Google Scholar 

  • Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, Peiper SC, Parmentier M, Collman RG, Doms RW (1996) A dual-tropic primary HIV-1 isolate that uses fusin and the β-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85:1149–1158

    Article  PubMed  CAS  Google Scholar 

  • Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP et al (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673

    Article  PubMed  CAS  Google Scholar 

  • Eitzen G (2003) Actin remodeling to facilitate membrane fusion. Biochim Biophys Acta 1641:175–181

    Article  PubMed  CAS  Google Scholar 

  • Farnet CM, Haseltine WA (1991) Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. J Virol 65:1910–1915

    PubMed  CAS  Google Scholar 

  • Farzan M, Choe H, Martin KA, Sun Y, Sidelko M, Mackay CR, Gerard NP, Sodroski J, Gerard C (1997) HIV-1 entry and macrophage inflammatory protein-1beta-mediated signaling are independent functions of the chemokine receptor CCR5. J Biol Chem 272:6854–6857

    Article  PubMed  CAS  Google Scholar 

  • Farzan M, Choe H, Desjardins E, Sun Y, Kuhn J, Cao J, Archambault D, Kolchinsky P, Koch M, Wyatt R et al (1998) Stabilization of human immunodeficiency virus type 1 envelope glycoprotein trimers by disulfide bonds introduced into the gp41 glycoprotein ectodomain. J Virol 72:7620–7625

    PubMed  CAS  Google Scholar 

  • Fassati A, Goff SP (2001) Characterization of intracellular reverse transcription complexes of human immunodeficiency virus type 1. J Virol 75:3626–3635

    Article  PubMed  CAS  Google Scholar 

  • Felice B, Cattoglio C, Cittaro D, Testa A, Miccio A, Ferrari G, Luzi L, Recchia A, Mavilio F (2009) Transcription factor binding sites are genetic determinants of retroviral integration in the human genome. PLoS ONE 4:e4571

    Article  PubMed  CAS  Google Scholar 

  • Felts RL, Narayan K, Estes JD, Shi D, Trubey CM, Fu J, Hartnell LM, Ruthel GT, Schneider DK, Nagashima K et al (2010) 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells. Proc Of The Natl Acad Of Sci Of The US Of Am 107:13336–13341

    Article  CAS  Google Scholar 

  • Feng Y, Broder CC, Kennedy PE, Berger EA (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, g protein-coupled receptor. Science 272:872–877

    Article  PubMed  CAS  Google Scholar 

  • Gallaher WR (1987) Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus. Cell 50:327–328

    Article  PubMed  CAS  Google Scholar 

  • Gary R, Bretscher A (1995) Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Mol Biol Cell 6:1061–1075

    PubMed  CAS  Google Scholar 

  • Giguere JF, Bounou S, Paquette JS, Madrenas J, Tremblay MJ (2004) Insertion of host-derived costimulatory molecules CD80 (B7.1) and CD86 (B7.2) into human immunodeficiency virus type 1 affects the virus life cycle. J Virol 78:6222–6232

    Article  PubMed  CAS  Google Scholar 

  • Gilbert C, Cantin R, Barat C, Tremblay MJ (2007) Human immunodeficiency virus type 1 replication in dendritic cell-T-cell cocultures is increased upon incorporation of host LFA-1 due to higher levels of virus production in immature dendritic cells. J Virol 81:7672–7682

    Article  PubMed  CAS  Google Scholar 

  • Gorry PR, Zhang C, Wu S, Kunstman K, Trachtenberg E, Phair J, Wolinsky S, Gabuzda D (2002) Persistence of dual-tropic HIV-1 in an individual homozygous for the CCR5 Delta 32 allele. Lancet 359:1832–1834

    Article  PubMed  CAS  Google Scholar 

  • Gosling J, Monteclaro FS, Atchison RE, Arai H, Tsou CL, Goldsmith MA, Charo IF (1997) Molecular uncoupling of C-C chemokine receptor 5-induced chemotaxis and signal transduction from HIV-1 coreceptor activity. Proc Of The Natl Acad Of Sci Of The US Of Am 94:5061–5066

    Article  CAS  Google Scholar 

  • Gosselin A, Monteiro P, Chomont N, Diaz-Griffero F, Said EA, Fonseca S, Wacleche V, El-Far M, Boulassel MR, Routy JP et al (2010) Peripheral blood CCR4+ CCR6+ and CXCR3+ CCR6+ CD4+ T cells are highly permissive to HIV-1 infection. J Of Immunol 184:1604–1616

    Article  CAS  Google Scholar 

  • Graham DR, Chertova E, Hilburn JM, Arthur LO, Hildreth JE (2003) Cholesterol depletion of human immunodeficiency virus type 1 and simian immunodeficiency virus with beta-cyclodextrin inactivates and permeabilizes the virions: evidence for virion-associated lipid rafts. J Virol 77:8237–8248

    Article  PubMed  CAS  Google Scholar 

  • Grainger DJ, Lever AM (2005) Blockade of chemokine-induced signalling inhibits CCR5-dependent HIV infection in vitro without blocking gp120/CCR5 interaction. Retrovirology 2:23

    Article  PubMed  CAS  Google Scholar 

  • Grewe C, Beck A, Gelderblom HR (1990) HIV: early virus–cell interactions. J Acquir Immune Defic Syndr 3:965–974

    PubMed  CAS  Google Scholar 

  • Guntermann C, Murphy BJ, Zheng R, Qureshi A, Eagles PA, Nye KE (1999) Human immunodeficiency virus-1 infection requires pertussis toxin sensitive G-protein-coupled signalling and mediates cAMP downregulation. Biochem Biophys Res Commun 256:429–435

    Article  PubMed  CAS  Google Scholar 

  • Guyader M, Kiyokawa E, Abrami L, Turelli P, Trono D (2002) Role for human immunodeficiency virus type 1 membrane cholesterol in viral internalization. J Virol 76:10356–10364

    Article  PubMed  CAS  Google Scholar 

  • Haedicke J, de Los Santos K, Goff SP, Naghavi MH (2008) The ezrin–radixin–moesin family member ezrin regulates stable microtubule formation and retroviral infection. J Virol 82:4665–4670

    Article  PubMed  CAS  Google Scholar 

  • Haller C, Fackler OT (2008) HIV-1 at the immunological and T-lymphocytic virological synapse. Biol Chem 389:1253–1260

    Article  PubMed  CAS  Google Scholar 

  • Harmon B, Ratner L (2008) Induction of the Galpha(q) signaling cascade by the human immunodeficiency virus envelope is required for virus entry. J Virol 82:9191–9205

    Article  PubMed  CAS  Google Scholar 

  • Harmon B, Campbell N, Ratner L (2010) Role of Abl kinase and the Wave2 signaling complex in HIV-1 entry at a post-hemifusion step. PLoS Pathog 6:e1000956

    Article  PubMed  CAS  Google Scholar 

  • Heinzinger NK, Bukrinsky MI, Haggerty SA, Ragland AM, Kewalramani V, Lee M-A, Gendelman HE, Ratner L, Stevenson M, Emerman M (1994) The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci USA 91:7311–7315

    Article  PubMed  CAS  Google Scholar 

  • Hirao M, Sato N, Kondo T, Yonemura S, Monden M, Sasaki T, Takai Y, Tsukita S (1996) Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J Cell Biol 135:37–51

    Article  PubMed  CAS  Google Scholar 

  • Hoffman TL, Doms RW (1998) Chemokines and coreceptors in HIV/SIV–host interactions. AIDS 12:S17–S26

    PubMed  Google Scholar 

  • Hoffman TL, Stephens EB, Narayan O, Doms RW (1998) HIV type I envelope determinants for use of the CCR2b, CCR3, STRL33, and APJ coreceptors. Proc Of The Natl Acad Of Sci Of The US Of Am 95:11360–11365

    Article  CAS  Google Scholar 

  • Hooker CW, Harrich D (2003) The first strand transfer reaction of HIV-1 reverse transcription is more efficient in infected cells than in cell-free natural endogenous reverse transcription reactions. J Clin Virol 26:229–238

    Article  PubMed  CAS  Google Scholar 

  • Hubner W, McNerney GP, Chen P, Dale BM, Gordon RE, Chuang FY, Li XD, Asmuth DM, Huser T, Chen BK (2009) Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science 323:1743–1747

    Article  PubMed  CAS  Google Scholar 

  • Igakura T, Stinchcombe JC, Goon PK, Taylor GP, Weber JN, Griffiths GM, Tanaka Y, Osame M, Bangham CR (2003) Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299:1713–1716

    Article  PubMed  CAS  Google Scholar 

  • Jolly C, Sattentau QJ (2004) Retroviral spread by induction of virological synapses. Traffic 5:643–650

    Article  PubMed  CAS  Google Scholar 

  • Jolly C, Sattentau QJ (2007a) Human immunodeficiency virus type 1 assembly, budding, and cell–cell spread in T cells take place in tetraspanin-enriched plasma membrane domains. J Virol 81:7873–7884

    Article  PubMed  CAS  Google Scholar 

  • Jolly C, Sattentau QJ (2007b) Regulated secretion from CD4+ T cells. Trends Immunol 28:474–481

    Article  PubMed  CAS  Google Scholar 

  • Jones KL, Roche M, Gantier MP, Begum NA, Honjo T, Caradonna S, Williams BR, Mak J (2010) X4 and R5 HIV-1 have distinct post-entry requirements for uracil DNA glycosylase during infection of primary cells. J Biol Chem 285:18603–18614

    Article  PubMed  CAS  Google Scholar 

  • Josefsson L, Dahl V, Palmer S (2010) Can HIV infection be eradicated through use of potent antiviral agents? Curr Opin Infect Dis 23:628–632

    Article  PubMed  Google Scholar 

  • Karageorgos L, Li P, Burrell C (1993) Characterization of HIV replication complexes early after cell-to-cell infection. AIDS Res Hum Retroviruses 9:817–823

    Article  PubMed  CAS  Google Scholar 

  • Kauder SE, Bosque A, Lindqvist A, Planelles V, Verdin E (2009) Epigenetic regulation of HIV-1 latency by cytosine methylation. PLoS Pathog 5:e1000495

    Article  PubMed  CAS  Google Scholar 

  • Kelly MD, Naif HM, Adams SL, Cunningham AL, Lloyd AR (1998) Dichotomous effects of beta-chemokines on HIV replication in monocytes and monocyte-derived macrophages. J Of Immunol 160:3091–3095

    CAS  Google Scholar 

  • Kinter A, Catanzaro A, Monaco J, Ruiz M, Justement J, Moir S, Arthos J, Oliva A, Ehler L, Mizell S et al (1998) CC-chemokines enhance the replication of T-tropic strains of HIV-1 in CD4(+) T cells: role of signal transduction. Proc Of The Natl Acad Of Sci Of The US Of Am 95:11880–11885

    Article  CAS  Google Scholar 

  • Kinter AL, Umscheid CA, Arthos J, Cicala C, Lin Y, Jackson R, Donoghue E, Ehler L, Adelsberger J, Rabin RL et al (2003) HIV envelope induces virus expression from resting CD4+ T cells isolated from HIV-infected individuals in the absence of markers of cellular activation or apoptosis. J Of Immunol 170:2449–2455

    CAS  Google Scholar 

  • Klatzmann D, Champagne E, Chamaret S, Gruest J, Guetard D, Hercend T, Gluckman JC, Montagnier L (1984) T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312:767–768

    Article  PubMed  CAS  Google Scholar 

  • Kohler RE, Comerford I, Townley S, Haylock-Jacobs S, Clark-Lewis I, McColl SR (2008) Antagonism of the chemokine receptors CXCR3 and CXCR4 reduces the pathology of experimental autoimmune encephalomyelitis. Brain Pathol 18:504–516

    PubMed  CAS  Google Scholar 

  • Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, Irelan JT, Chiang CY, Tu BP, De Jesus PD, Lilley CE et al (2008) Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135:49–60

    Article  PubMed  CAS  Google Scholar 

  • Kowalski M, Potz J, Basiripour L, Dorfman T, Goh WC, Terwilliger E, Dayton A, Rosen C, Hasteline W, Sodroski J (1987) Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1. Science 237:1351–1355

    Article  PubMed  CAS  Google Scholar 

  • Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393:648–659

    Article  PubMed  CAS  Google Scholar 

  • Lanman J, Lam TT, Barnes S, Sakalian M, Emmett MR, Marshall AG, Prevelige PE Jr (2003) Identification of novel interactions in HIV-1 capsid protein assembly by high-resolution mass spectrometry. J Mol Biol 325:759–772

    Article  PubMed  CAS  Google Scholar 

  • Lanman J, Lam TT, Emmett MR, Marshall AG, Sakalian M, Prevelige PE Jr (2004) Key interactions in HIV-1 maturation identified by hydrogen-deuterium exchange. Nat Struct Mol Biol 11:676–677

    Article  PubMed  CAS  Google Scholar 

  • Lasky LA, Nakamura G, Smith DH, Fennie C, Shimasaki C, Patzer E, Berman P, Gregory T, Capon DJ (1987) Delineation of a region of the human immunodeficiency virus type 1 gp120 glycoprotein critical for interaction with the CD4 receptor. Cell 50:975–985

    Article  PubMed  CAS  Google Scholar 

  • Lasserre R, Charrin S, Cuche C, Danckaert A, Thoulouze MI, de Chaumont F, Duong T, Perrault N, Varin-Blank N, Olivo-Marin JC et al (2010) Ezrin tunes T-cell activation by controlling Dlg1 and microtubule positioning at the immunological synapse. EMBO J 29:2301–2314

    Article  PubMed  CAS  Google Scholar 

  • Lehrman G, Hogue IB, Palmer S, Jennings C, Spina CA, Wiegand A, Landay AL, Coombs RW, Richman DD, Mellors JW et al (2005) Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet 366:549–555

    Article  PubMed  CAS  Google Scholar 

  • Liao Z, Graham DR, Hildreth JE (2003) Lipid rafts and HIV pathogenesis: virion-associated cholesterol is required for fusion and infection of susceptible cells. AIDS Res Hum Retroviruses 19:675–687

    Article  PubMed  CAS  Google Scholar 

  • Lin YL, Mettling C, Portales P, Reant B, Clot J, Corbeau P (2005) G-protein signaling triggered by R5 human immunodeficiency virus type 1 increases virus replication efficiency in primary T lymphocytes. J Virol 79:7938–7941

    Article  PubMed  CAS  Google Scholar 

  • Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  PubMed  CAS  Google Scholar 

  • Lordanskiy S, Berro R, Altieri M, Kashanchi F, Bukrinsky M (2006) Intracytoplasmic maturation of the human immunodeficiency virus type 1 reverse transcription complexes determines their capacity to integrate into chromatin. Retrovirology 3:4

    Article  CAS  Google Scholar 

  • Lori F, Veronese F, De Vico AL, Lusso P, Reitz MJ, Gallo RC (1992) Viral DNA carried by human immunodeficiency virus type 1 virons. J Virol 66:5067–5074

    PubMed  CAS  Google Scholar 

  • Lu M, Blacklow SC, Kim PS (1995) A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Biol 2:1075–1082

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, Berson JF, Chen Y, Turner JD, Zhang T, Sharron M, Jenks MH, Wang Z, Kim J, Rucker J et al (1997) Evolution of HIV-1 coreceptor usage through interactions with distinct CCR5 and CXCR4 domains. Proc Of The Natl Acad Of Sci Of The US Of Am 94:6426–6431

    Article  CAS  Google Scholar 

  • Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA, Axel R (1986) The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47:333–348

    Article  PubMed  CAS  Google Scholar 

  • Maddon PJ, McDougal JS, Clapham PR, Dalgleish AG, Jamal S, Weiss RA, Axel R (1988) HIV infection does not require endocytosis of its receptor, CD4. Cell 54:865–874

    Article  PubMed  CAS  Google Scholar 

  • Manes S, del Real G, Martinez AC (2003) Pathogens: raft hijackers. Nat Rev Immunol 3:557–568

    Article  PubMed  CAS  Google Scholar 

  • Manganaro L, Lusic M, Gutierrez MI, Cereseto A, Del Sal G, Giacca M (2010) Concerted action of cellular JNK and Pin1 restricts HIV-1 genome integration to activated CD4+ T lymphocytes. Nat Med 16:329–333

    Article  PubMed  CAS  Google Scholar 

  • Mangeat P, Roy C, Martin M (1999) ERM proteins in cell adhesion and membrane dynamics. Trends Cell Biol 9:187–192

    Article  PubMed  CAS  Google Scholar 

  • Marsh M, Pelchen-Matthews A (2000) Endocytosis in viral replication. Traffic 1:525–532

    Article  PubMed  CAS  Google Scholar 

  • Matsui T, Yonemura S, Tsukita S (1999) Activation of ERM proteins in vivo by Rho involves phosphatidyl-inositol 4-phosphate 5-kinase and not ROCK kinases. Curr Biol 9:1259–1262

    Article  PubMed  CAS  Google Scholar 

  • McClure MO, Marsh M, Weiss RA (1988) Human immunodeficiency virus infection of CD4-bearing cells occurs by a pH-independent mechanism. EMBO J 7:513–518

    PubMed  CAS  Google Scholar 

  • McDonald D, Vodicka MA, Lucero G, Svitkina TM, Borisy GG, Emerman M, Hope TJ (2002) Visualization of the intracellular behavior of HIV in living cells. J Cell Biol 159:441–452

    Article  PubMed  CAS  Google Scholar 

  • McMahon D, Jones J, Wiegand A, Gange SJ, Kearney M, Palmer S, McNulty S, Metcalf JA, Acosta E, Rehm C et al (2010) Short-course raltegravir intensification does not reduce persistent low-level viremia in patients with HIV-1 suppression during receipt of combination antiretroviral therapy. Clin Infect Dis 50:912–919

    Article  PubMed  CAS  Google Scholar 

  • McManus CM, Doms RW (2000) Fusion mediated by the HIV-1 envelope protein. Subcell Biochem 34:457–481

    Article  PubMed  CAS  Google Scholar 

  • Milich L, Margolin BH, Swanstrom R (1997) Patterns of amino acid variability in NSI-like and SI-like V3 sequences and a linked change in the CD4-binding domain of the HIV-1 Env protein. Virology 239:108–118

    Article  PubMed  CAS  Google Scholar 

  • Miller MD, Farnet CM, Bushman FD (1997) Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J Virol 71:5382–5390

    PubMed  CAS  Google Scholar 

  • Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB (2009) HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 137:433–444

    Article  PubMed  CAS  Google Scholar 

  • Muller B, Daecke J, Fackler OT, Dittmar MT, Zentgraf H, Krausslich HG (2004) Construction and characterization of a fluorescently labeled infectious human immunodeficiency virus type 1 derivative. J Virol 78:10803–10813

    Article  PubMed  CAS  Google Scholar 

  • Naghavi MH, Valente S, Hatziioannou T, de Los Santos K, Wen Y, Mott C, Gundersen GG, Goff SP (2007) Moesin regulates stable microtubule formation and limits retroviral infection in cultured cells. EMBO J 26:41–52

    Article  PubMed  CAS  Google Scholar 

  • Nermut MV, Fassati A (2003) Structural analyses of purified human immunodeficiency virus type 1 intracellular reverse transcription complexes. J Virol 77:8196–8206

    Article  PubMed  CAS  Google Scholar 

  • Nguyen DG, Booth A, Gould SJ, Hildreth JE (2003) Evidence that HIV budding in primary macrophages occurs through the exosome release pathway. J Biol Chem 278:52347–52354

    Article  PubMed  CAS  Google Scholar 

  • Nobile C, Rudnicka D, Hasan M, Aulner N, Porrot F, Machu C, Renaud O, Prevost MC, Hivroz C, Schwartz O et al (2010) HIV-1 Nef inhibits ruffles, induces filopodia, and modulates migration of infected lymphocytes. J Virol 84:2282–2293

    Article  PubMed  CAS  Google Scholar 

  • Norcross MA (1984) A synaptic basis for T-lymphocyte activation. Ann Immunol Paris 135D:113–134

    Article  PubMed  CAS  Google Scholar 

  • Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier J-L, Arenzana-Seisdedos F, Schwartz O, Heard J-M, Clark-Lewis I, Legler DF et al (1996) The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 382:833–835

    Article  PubMed  CAS  Google Scholar 

  • Olshevsky U, Helseth E, Furman C, Li J, Haseltine W, Sodroski J (1990) Identification of individual human immunodeficiency virus type 1 gp120 amino acids important for CD4 receptor binding. J Virol 64:5701–5707

    PubMed  CAS  Google Scholar 

  • Ono A, Freed EO (2001) Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc Of The Natl Acad Of Sci Of The US Of Am 98:13925–13930

    Article  CAS  Google Scholar 

  • Ostrowski MA, Krakauer DC, Li Y, Justement SJ, Learn G, Ehler LA, Stanley SK, Nowak M, Fauci AS (1998) Effect of immune activation on the dynamics of human immunodeficiency virus replication and on the distribution of viral quasispecies. J Virol 72:7772–7784

    PubMed  CAS  Google Scholar 

  • Ostrowski MA, Chun TW, Justement SJ, Motola I, Spinelli MA, Adelsberger J, Ehler LA, Mizell SB, Hallahan CW, Fauci AS (1999) Both memory and CD45RA+/CD62L + naive CD4(+) T cells are infected in human immunodeficiency virus type 1-infected individuals. J Virol 73:6430–6435

    PubMed  CAS  Google Scholar 

  • Oswald-Richter K, Grill SM, Leelawong M, Tseng M, Kalams SA, Hulgan T, Haas DW, Unutmaz D (2007) Identification of a CCR5-expressing T cell subset that is resistant to R5-tropic HIV infection. PLoS Pathog 3:e58

    Article  PubMed  CAS  Google Scholar 

  • Ott DE (1997) Cellular proteins in HIV virions. Rev Med Virol 7:167–180

    Article  PubMed  CAS  Google Scholar 

  • Ott DE (2002) Potential roles of cellular proteins in HIV-1. Rev Med Virol 12:359–374

    Article  PubMed  CAS  Google Scholar 

  • Ott DE (2008) Cellular proteins detected in HIV-1. Rev Med Virol 18:159–175

    Article  PubMed  CAS  Google Scholar 

  • Ouellet M, Mercier S, Pelletier I, Bounou S, Roy J, Hirabayashi J, Sato S, Tremblay MJ (2005) Galectin-1 acts as a soluble host factor that promotes HIV-1 infectivity through stabilization of virus attachment to host cells. J Of Immunol 174:4120–4126

    CAS  Google Scholar 

  • Palmer S, Maldarelli F, Wiegand A, Bernstein B, Hanna GJ, Brun SC, Kempf DJ, Mellors JW, Coffin JM, King MS (2008) Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc Of The Natl Acad Of Sci Of The US Of Am 105:3879–3884

    Article  CAS  Google Scholar 

  • Pearson MA, Reczek D, Bretscher A, Karplus PA (2000) Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101:259–270

    Article  PubMed  CAS  Google Scholar 

  • Pelchen-Matthews A, Clapham P, Marsh M (1995) Role of CD4 endocytosis in human immunodeficiency virus infection. J Virol 69:8164–8168

    PubMed  CAS  Google Scholar 

  • Pelkmans L (2005) Viruses as probes for systems analysis of cellular signalling, cytoskeleton reorganization and endocytosis. Curr Opin Microbiol 8:331–337

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans L, Zerial M (2005) Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature 436:128–133

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans L, Fava E, Grabner H, Hannus M, Habermann B, Krausz E, Zerial M (2005) Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436:78–86

    Article  PubMed  CAS  Google Scholar 

  • Piguet V, Sattentau Q (2004) Dangerous liaisons at the virological synapse. J Of Clin Investig 114:605–610

    CAS  Google Scholar 

  • Pilkington KR, Clark-Lewis I, McColl SR (2004) Inhibition of generation of cytotoxic T lymphocyte activity by a CCL19/macrophage inflammatory protein (MIP)-3beta antagonist. J Biol Chem 279:40276–40282

    Article  PubMed  CAS  Google Scholar 

  • Pope M, Al E (1994) Conjugates of dendritic cells and memory T Lymphocytes from skin facilitate productive infection with human immunodeficiency virus. Cell 78:389–398

    Article  PubMed  CAS  Google Scholar 

  • Pope M, Gezelter S, Gallo N, Hoffman L, Steinman RM (1995) Low levels of HIV-1 infection in cutaneous dendritic cells promote extensive viral replication upon binding to memory CD4+ T cells. J Exp Med 182:2045–2056

    Article  PubMed  CAS  Google Scholar 

  • Saleh S, Solomon A, Wightman F, Xhilaga M, Cameron PU, Lewin SR (2007) CCR7 ligands CCL19 and CCL21 increase permissiveness of resting memory CD4+ T cells to HIV-1 infection: a novel model of HIV-1 latency. Blood 110:4161–4164

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Orenstein J, Dimitrov D, Martin M (1992) Cell-to-cell spread of HIV-1 occurs within minutes and may not involve the participation of virus particles. Virology 186:712–724

    Article  PubMed  CAS  Google Scholar 

  • Sattentau QJ, Moore JP (1991) Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding. J Exp Med 174:407–415

    Article  PubMed  CAS  Google Scholar 

  • Scripture-Adams DD, Brooks DG, Korin YD, Zack JA (2002) Interleukin-7 induces expression of latent human immunodeficiency virus type 1 with minimal effects on T-cell phenotype. J Virol 76:13077–13082

    Article  PubMed  CAS  Google Scholar 

  • Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418:646–650

    Article  PubMed  CAS  Google Scholar 

  • Shehu-Xhilaga M, Rhodes D, Wightman F, Liu HB, Solomon A, Saleh S, Dear AE, Cameron PU, Lewin SR (2009) The novel histone deacetylase inhibitors metacept-1 and metacept-3 potently increase HIV-1 transcription in latently infected cells. AIDS 23:2047–2050

    Article  PubMed  CAS  Google Scholar 

  • Sherer NM, Lehmann MJ, Jimenez-Soto LF, Horensavitz C, Pypaert M, Mothes W (2007) Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 9:310–315

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11:688–699

    Article  PubMed  CAS  Google Scholar 

  • Sol-Foulon N, Sourisseau M, Porrot F, Thoulouze MI, Trouillet C, Nobile C, Blanchet F, di Bartolo V, Noraz N, Taylor N et al (2007) ZAP-70 kinase regulates HIV cell-to-cell spread and virological synapse formation. EMBO J 26:516–526

    Article  PubMed  CAS  Google Scholar 

  • Sourisseau M, Sol-Foulon N, Porrot F, Blanchet F, Schwartz O (2007) Inefficient human immunodeficiency virus replication in mobile lymphocytes. J Virol 81:1000–1012

    Article  PubMed  CAS  Google Scholar 

  • Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Kohler K, Oddos S, Eissmann P, Brodsky FM, Hopkins C et al (2008) Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol 10:211–219

    Article  PubMed  CAS  Google Scholar 

  • Stein BS, Gowda SD, Lifson JD, Penhallow RC, Bensch KG, Engleman EG (1987) pH-independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane. Cell 49:659–668

    Article  PubMed  CAS  Google Scholar 

  • Stinchcombe JC, Bossi G, Booth S, Griffiths GM (2001) The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15:751–761

    Article  PubMed  CAS  Google Scholar 

  • Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM (2006) Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443:462–465

    Article  PubMed  CAS  Google Scholar 

  • Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427:848–853

    Article  PubMed  CAS  Google Scholar 

  • Tardif MR, Tremblay MJ (2005) Regulation of LFA-1 activity through cytoskeleton remodeling and signaling components modulates the efficiency of HIV type-1 entry in activated CD4+ T lymphocytes. J Of Immunol 175:926–935

    CAS  Google Scholar 

  • Tardif MR, Gilbert C, Thibault S, Fortin JF, Tremblay MJ (2009) LFA-1 antagonists as agents limiting human immunodeficiency virus type 1 infection and transmission and potentiating the effect of the fusion inhibitor T-20. Antimicrob Agents Chemother 53:4656–4666

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga K, Greenberg ML, Morse MA, Cumming RI, Lyerly HK, Cullen BR (2001) Molecular basis for cell tropism of CXCR4-dependent human immunodeficiency virus type 1 isolates. J Virol 75:6776–6785

    Article  PubMed  CAS  Google Scholar 

  • Trono D (1992) Partial reverse transcripts in virions from human immunodeficiency and murine leukemia viruses. J Virol 66:4893–4900

    PubMed  CAS  Google Scholar 

  • Turville SG, Aravantinou M, Stossel H, Romani N, Robbiani M (2008) Resolution of de novo HIV production and trafficking in immature dendritic cells. Nat Meth 5:75–85

    Article  CAS  Google Scholar 

  • van Rij RP, Blaak H, Visser JA, Brouwer M, Rientsma R, Broersen S, de Roda Husman AM, Schuitemaker H (2000) Differential coreceptor expression allows for independent evolution of non-syncytium-inducing and syncytium-inducing HIV-1. J Of Clin Investig 106:1569

    Google Scholar 

  • Verani A, Lusso P (2002) Chemokines as natural HIV antagonists. Curr Mol Med 2:691–702

    Article  PubMed  CAS  Google Scholar 

  • Vigneri P, Wang JY (2001) Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nat Med 7:228–234

    Article  PubMed  CAS  Google Scholar 

  • Warrilow D, Stenzel D, Harrich D (2007) Isolated HIV-1 core is active for reverse transcription. Retrovirology 4:77

    Article  PubMed  CAS  Google Scholar 

  • Warrilow D, Meredith L, Davis A, Burrell C, Li P, Harrich D (2008) Cell factors stimulate human immunodeficiency virus type 1 reverse transcription in vitro. J Virol 82:1425–1437

    Article  PubMed  CAS  Google Scholar 

  • Williams SA, Chen LF, Kwon H, Fenard D, Bisgrove D, Verdin E, Greene WC (2004) Prostratin antagonizes HIV latency by activating NF-kappaB. J Biol Chem 279:42008–42017

    Article  PubMed  CAS  Google Scholar 

  • Williams SA, Harata-Lee Y, Comerford I, Anderson RL, Smyth MJ, McColl SR (2010) Multiple functions of CXCL12 in a syngeneic model of breast cancer. Mol Cancer 9:250

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Yoder A (2009) Chemokine coreceptor signaling in HIV-1 infection and pathogenesis. PLoS Pathog 5:e1000520

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Paxton WA, Kassam N, Ruffing N, Rottman JB, Sullivan N, Choe H, Sodroski J, Newman W, Koup RA et al (1997) CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J Exp Med 185:1681–1691

    Article  PubMed  CAS  Google Scholar 

  • Yoder A, Yu D, Dong L, Iyer SR, Xu X, Kelly J, Liu J, Wang W, Vorster PJ, Agulto L et al (2008) HIV envelope-CXCR4 signaling activates cofilin to overcome cortical actin restriction in resting CD4 T cells. Cell 134:782–792

    Article  PubMed  CAS  Google Scholar 

  • Yu D, Wang W, Yoder A, Spear M, Wu Y (2009) The HIV envelope but not VSV glycoprotein is capable of mediating HIV latent infection of resting CD4 T cells. PLoS Pathog 5:e1000633

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Dornadula G, Pomerantz RJ (1996) Endogenous reverse transcription of human immunodeficiency virus type 1 in physiological microenviroments: an important stage for viral infection of nondividing cells. J Virol 70:2809–2824

    PubMed  CAS  Google Scholar 

  • Zhang H, Dornadula G, Pomerantz RJ (1998) Natural endogenous reverse transcription of HIV-1. J Reprod Immunol 41:255–260

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Dornadula G, Orenstein J, Pomerantz RJ (2000) Morphologic changes in human immunodeficiency virus type 1 virions secondary to intravirion reverse transcription: evidence indicating that reverse transcription may not take place within the intact viral core. J Hum Virol 3:165–172

    PubMed  CAS  Google Scholar 

  • Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, Stec E, Ferrer M, Strulovici B, Hazuda DJ et al (2008) Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 4:495–504

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Health and Medical Research Council (NHMRC) of Australia (CFP, PUC, SRL, AJ, JM), the Australian Research Council (JM), Australian Centre for HIV and Hepatitis Viruses (SRL, KLJ, JM), National Institute of Health (SRL, JM), the Portuguese Foundation for Science and Technology (CFP), the Alfred Foundation (SRL) and the Northcote King’s College Training Fellowship (RPS). SRL is an NHMRC Practitioner Fellow. JM is a recipient of the Pfizer Foundation Fellowship and ARC Future Fellowship.

Conflict of interest disclosure

We declare that all authors do not have any conflict of interest with the contents of the manuscripts. The funders have no role in designing and deciding the contents of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnson Mak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, K.L., Smyth, R.P., Pereira, C.F. et al. Early Events of HIV-1 Infection: Can Signaling be the Next Therapeutic Target?. J Neuroimmune Pharmacol 6, 269–283 (2011). https://doi.org/10.1007/s11481-011-9268-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-011-9268-5

Keywords

Navigation