Skip to main content
Log in

The Effect of Salt on the Structure of Individual Fat Globules and the Microstructure of Dry Salted Cheddar Cheese

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Salting is an essential step in the production of Cheddar and other cheese varieties and is a well-studied process but the effect of salt addition on the microstructure of the milk ingredients and resulting cheese is not well known. This study provides insights into how the primary components in milk and the cheese matrix respond to salting. High concentrations of salt (15–25% (w/w) NaCl) disrupted fat globules due to the increased osmotic pressure. This led to fat coalescence, resulting in large fat globules >10 μm in diameter, together with submicron sized fat globules ~ 120–500 nm in diameter. Salt addition also prevented the visualization of the milk fat globule membrane when added at high concentrations (25% (w/w) NaCl) and induced asymmetry in liquid ordered domains at lower concentrations (10% (w/w) NaCl). The microstructure of the surface of the milled curd was compacted by salt, appearing coarse with 5% (w/w) NaCl or more hydrated with a denser protein structure with 2.5% (w/w) NaCl. After pressing, the curd junctions were fine and thin within the unsalted sample but coarse and thick where 5% (w/w) NaCl was added. Such coarse junctions appear to reduce binding between curd particles leading to a less cohesive cheese. Our results show that NaCl can significantly impact on the structure of fat and protein matrix of the curd surface if salt is not evenly distributed during dry salting. High concentrations of salt can also change the microstructure and texture of the cheese, resulting in a more heterogeneous product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. P. Guinee, P. F. Fox, in Cheese: chemistry, physics and microbiology ed. By P. F. Fox, P. L. H. McSweeney. (Elsevier Academic Press, London, 2004), pp. 207–259

  2. T.P. Guinee, E.O. Mulholland, J. Kelly, D.J.O. Callaghan, J. Dairy Sci. 90(1), 110–123 (2007)

    PubMed  CAS  Google Scholar 

  3. M. E. Johnson, R. Kapoor, D. J. McMahon, D. R. McCoy, R. G. Narasimmon, Compr. Rev. in Food Sci. Food Saf. 8 (3), 252–268 (2009)

  4. E. Vandenberghe, S. Choucharina, B.D. Ketelaere, J.D. Baerdemaeker, J. Claes, J. Food Eng. 131, 50–57 (2014)

    CAS  Google Scholar 

  5. T. P. Guinee, B. J. Sutherland, in Encyclopedia of Dairy Sciences (Second Edition), ed. by J. W. Fuquay. (Academic Press, San Diego, 2011), pp. 595–606

  6. C. Melilli, D.M. Barbano, M. Caccamo, L. Tuminello, S. Carpino, G. Licitra, J. Dairy Sci. 89(5), 1420–1438 (2006)

    PubMed  CAS  Google Scholar 

  7. D.J. McMahon, Aust. J. Dairy Technol. 65(3), 200–205 (2010)

    CAS  Google Scholar 

  8. M. Kelly, P.F. Fox, P.L.H. McSweeney, Milchwissenschaft. 51, 498–501 (1996)

    CAS  Google Scholar 

  9. N. Chevanan, K. Muthukumarappan, P. Upreti, L.E. Metzger, J. Texture Studies. 37(6), 711–730 (2006)

    Google Scholar 

  10. L. Ong, R.R. Dagastine, S.E. Kentish, S.L. Gras, Dairy Sci. Technol. 91(6), 739–758 (2011)

    CAS  Google Scholar 

  11. C. Wijesundera, L. Drury, K. Muthukumarapan, S. Gunasakeran, D. Everett, Aust. J. Dairy Technol. 55, 9–15 (2000)

    CAS  Google Scholar 

  12. H.W. Heid, T.W. Keenan, Eur. J. Cell Biol. 84(2–3), 245–258 (2005)

    PubMed  CAS  Google Scholar 

  13. O. Ménard, S. Ahmad, F. Rousseau, V. Briard-Bion, F. Gaucheron, C. Lopez, Food Chem. 120(2), 544–551 (2010)

    Google Scholar 

  14. T.T. Le, G. Debyser, W. Gilbert, et al., Int. Dairy J. 32(2), 110–120 (2013)

    CAS  Google Scholar 

  15. K. Dewettinck, R. Rombaut, N. Thienpont, T.T. Le, K. Messens, J. Van Camp, Inter. Dairy J. 18(5), 436–457 (2008)

    CAS  Google Scholar 

  16. B.A. Law, M.E. Sharpe, H.R. Chapman, B. Reiter, J. Dairy Sci. 56(6), 716–723 (1973)

    CAS  Google Scholar 

  17. V.V. Mistry, L.E. Metzger, J.L. Maubois, J. Dairy Sci. 79(7), 1137–1145 (1996)

    CAS  Google Scholar 

  18. E.A. Romeih, K.M. Moe, S. Skeie, Int. Dairy J. 26(1), 66–72 (2012)

    CAS  Google Scholar 

  19. R.A. Böckmann, A. Hac, T. Heimburg, H. Grubmüller, Biophys. J. 85(3), 1647–1655 (2003)

    PubMed  PubMed Central  Google Scholar 

  20. A.A. Gurtovenko, M. Miettinen, M. Karttunen, I. Vattulainen, J. Physical Chem, B. 109(44), 21126–21134 (2005)

    CAS  Google Scholar 

  21. A.A. Gurtovenko, I. Vattulainen, J. Physical Chem. B. 112(7), 1953–1962 (2008)

    CAS  Google Scholar 

  22. M. Rappolt, G. Pabst, H. Amenitsch, P. Laggner, Colloids Surf. A Physicochem. Eng. Asp. 183-185, 171–181 (2001)

    CAS  Google Scholar 

  23. T. Arakawa, S.N. Timasheff, Biochem. 21(25), 6545–6552 (1982)

    CAS  Google Scholar 

  24. T. Huppertz, P.F. Fox, Int. Dairy J. 16(10), 1142–1148 (2006)

    CAS  Google Scholar 

  25. M.H. Alu’datt, G.J. Al-Rabadi, I. Alli, et al., Food Bioprod. Process. 91(4), 327–335 (2013)

    Google Scholar 

  26. L. Ong, R. C. Lawrence, J. Gilles, et al., in Cheese (Fourth Edition), ed. by P. L. H. McSweeney, P. F. Fox, P. D. Cotter, D. W. Everett. (Academic Press, San Diego, 2017), pp. 829–863

  27. L. Ong, R.R. Dagastine, S.E. Kentish, S.L. Gras, J. Food Sci. 75(3), E135–E145 (2010)

    PubMed  CAS  Google Scholar 

  28. P. D’Incecco, S. Limbo, F. Faoro, J. Hogenboom, V. Rosi, S. Morandi, L. Pellegrino, J. Dairy Sci. 99(8), 6144–6156 (2016)

    PubMed  Google Scholar 

  29. C. Lopez, M.-N. Madec, R. Jimenez-Flores, Food Chem. 120(1), 22–33 (2010)

    CAS  Google Scholar 

  30. L. Ong, R.R. Dagastine, S.E. Kentish, S.L. Gras, Food Res. Int. 48(1), 119–130 (2012)

    CAS  Google Scholar 

  31. L. Ong, R.R. Dagastine, S.E. Kentish, S.L. Gras, LWT - food Sci. Technol. 44, 1291–1302 (2011)

    CAS  Google Scholar 

  32. M.C. Michalski, V. Briard, F. Michel, Lait 81(6), 787–796 (2001)

    CAS  Google Scholar 

  33. P. Walstra, Neth. Milk Dairy J. 23, 99–110 (1969)

    Google Scholar 

  34. A. Logan, L. Day, A. Pin, M. Auldist, A. Leis, A. Puvanenthiran, M.A. Augustin, Food Bioprocess Technol. 7(11), 3175–3185 (2014)

    CAS  Google Scholar 

  35. M.C. Michalski, F. Michel, C. Geneste, Lait. 82(2), 193–208 (2002)

    CAS  Google Scholar 

  36. P. Walstra, R. Jennes, Dairy Chemistry and Physics (John Willey & Sons, New York, 1984)

    Google Scholar 

  37. E. Kapania, K. Guillen, E. Freeman, M. Philen, in SPIE Smart Structures and Materials, Active and Passive Smart Structures and Integrated Systems (CA, USA, 2014), Vol. 9057, pp. 90573E

  38. P. D'Incecco, V. Rosi, G. Cabassi, J.A. Hogenboom, L. Pellegrino, Food Res. Int. 107, 477–485 (2018)

    PubMed  CAS  Google Scholar 

  39. J. Duboué, M. Bourrel, E. S. Carreras, et al., Energy Fuels (In Press) (2019)

    Google Scholar 

  40. A. Horibe, S. Fukusako, M. Yamada, Inter. J. Thermophys. 17(2), 483–493 (1996)

    CAS  Google Scholar 

  41. S. Gallier, D. Gragson, R. Jimenez-Flores, D. Everett, J. Agric, Food Chem. 58(7), 4250–4257 (2010)

    CAS  Google Scholar 

  42. C. Lopez, O. Ménard, Colloids Surf. B: Biointerfaces 83(1), 29–41 (2011)

    PubMed  CAS  Google Scholar 

  43. F. Yang, S. Liu, J. Xu, Q. Lan, F. Wei, D. Sun, J. Colloid Interface Sci. 302(1), 159–169 (2006)

    PubMed  CAS  Google Scholar 

  44. H.A. Morris, T.P. Guinee, P.F. Fox, J. Dairy Sci. 68(8), 1851–1858 (1985)

    Google Scholar 

  45. C. Melilli, D. Carcò, D.M. Barbano, G. Tumino, S. Carpino, G. Licitra, J. Dairy Sci. 88(7), 2329–2340 (2005)

    PubMed  CAS  Google Scholar 

  46. D.W. Everett, M.K. Rowney, M.W. Hickey, P. Roupas, Lait. 84(6), 539–549 (2004)

    CAS  Google Scholar 

  47. M. Kalab, R.J. Lowrie, D. Nichols, J. Dairy Sci. 65, 1171–1121 (1982)

    Google Scholar 

  48. R.J. Lowrie, M. Kalab, D. Nichols, J. Dairy Sci. 65(7), 1122–1129 (1982)

    Google Scholar 

  49. K. Soodam, L. Ong, I.B. Powell, S.E. Kentish, S.L. Gras, Food Bioprocess Technol. 7(10), 2912–2922 (2014)

    CAS  Google Scholar 

  50. R. C. Lawrence, Gilles, J., Creamer, L.K., Crow, V.L., Heap, H.A., Horne, C.G., Cheddar cheese and related dry-salted cheese varieties. (Elsevier Academic Press, London, 2004)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Australian Research Council’s Industrial Transformation Research Program (ITRP) funding scheme (project number IH120100005). The ARC Dairy Innovation Hub is collaboration between the University of Melbourne, The University of Queensland and Dairy Innovation Australia Ltd. The authors thank the Advance Microscopy Facility (AMF), the Biological Optical Microscopy Platform (BOMP) at the Bio21 Molecular Science and Biotechnology Institute and the Particular Fluids Processing Centre at the University of Melbourne for access to equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally L. Gras.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Online Resource 1

(DOCX 20 kb)

Online Resource 2

(PPTX 5936 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ong, L., D’Incecco, P., Pellegrino, L. et al. The Effect of Salt on the Structure of Individual Fat Globules and the Microstructure of Dry Salted Cheddar Cheese. Food Biophysics 15, 85–96 (2020). https://doi.org/10.1007/s11483-019-09606-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-019-09606-x

Keywords

Navigation