Skip to main content
Log in

Combined immunohistochemical and retrograde tracing reveals little evidence of innervation of the rat dentate gyrus by midbrain dopamine neurons

  • Research Article
  • Published:
Frontiers in Biology

Abstract

Although the functional neuroanatomy of the midbrain dopamine (mDA) system has been well characterized, the literature regarding its capacity to innervate the hippocampal formation has been inconsistent. The lack of expression of definitive markers for dopaminergic fibers, such as the dopamine transporter, in the hippocampus has complicated studies in this area. Here we have used immunohistochemical techniques to characterize the tyrosine hydroxylase expressing fiber network in the rat hippocampus, combined with retrograde tracing from the dentate gyrus to assess the capacity for afferent innervation by mDA neurons. The results indicate that virtually all tyrosine hydroxylase fibers throughout the hippocampus are of a noradrenergic phenotype, while the overlying cortex contains both dopaminergic and noradrenergic fiber networks. Furthermore, retrograde tracing from the dentate gyrus robustly labels tyrosine hydroxylase-immunoreactive noradrenergic neurons in the locus coeruleus but not mDA neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amaral D G, Cowan W M (1980). Subcortical afferents to the hippocampal formation in the monkey. J Comp Neurol, 189(4): 573–591

    Article  CAS  PubMed  Google Scholar 

  • Baker S A, Baker K A, Hagg T (2004). Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur J Neurosci, 20(2): 575–579

    Article  PubMed  Google Scholar 

  • Ben Abdallah NM, Slomianka L, Vyssotski A L, Lipp H P (2010). Early age-related changes in adult hippocampal neurogenesis in C57 mice. Neurobiol Aging, 31(1): 151–161

    Article  PubMed  Google Scholar 

  • Bischoff S, Scatton B, Korf J (1979). Biochemical evidence for a transmitter role of dopamine in the rat hippocampus. Brain Res, 165 (1): 161–165

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund A (1978). Monoaminergic inputs to the hippocampus. In: Symposium, C.F. (ed), Functions of the Septo-Hippocampal System. Elsevier Excerpta Medica North-Holland, Amsterdam

    Google Scholar 

  • Björklund A, Dunnett S B (2007). Dopamine neuron systems in the brain: an update. Trends Neurosci, 30(5): 194–202

    Article  PubMed  Google Scholar 

  • Borgkvist A, Malmlöf T, Feltmann K, Lindskog M, Schilström B (2012). Dopamine in the hippocampus is cleared by the norepinephrine transporter. Int J Neuropsychopharmacol, 15(4): 531–540

    CAS  PubMed  Google Scholar 

  • Broussard J I, Yang K, Levine AT, Tsetsenis T, Jenson D, Cao F, Garcia I, Arenkiel B R, Zhou F M, de Biasi M, Dani J A (2016). Dopamine regulates aversive contextual learning and associated in vivo synaptic plasticity in the hippocampus. Cell Reports, 14(8): 1930–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr D B, Sesack S R (2000). GABA-containing neurons in the rat ventral tegmental area project to the prefrontal cortex. Synapse, 38 (2): 114–123

    Article  CAS  PubMed  Google Scholar 

  • Creed M C, Ntamati N R, Tan K R (2014). VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems. Front Behav Neurosci, 8: 8

    Article  PubMed  PubMed Central  Google Scholar 

  • Drapeau E, Mayo W, Aurousseau C, Le Moal M, Piazza P V, Abrous D N (2003). Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci USA, 100(24): 14385–14390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois A, Savasta M, Curet O, Scatton B (1986). Autoradiographic distribution of the D1 agonist [3H]SKF 38393, in the rat brain and spinal cord. Comparison with the distribution of D2 dopamine receptors. Neuroscience, 19(1): 125–137

    CAS  PubMed  Google Scholar 

  • Emre M (2003). Dementia associated with Parkinson’s disease. Lancet Neurol, 2(4): 229–237

    Article  CAS  PubMed  Google Scholar 

  • Freundlieb N, François C, Tandé D, Oertel W H, Hirsch E C, Höglinger G U (2006). Dopaminergic substantia nigra neurons project topographically organized to the subventricular zone and stimulate precursor cell proliferation in aged primates. J Neurosci, 26(8): 2321–2325

    Article  CAS  PubMed  Google Scholar 

  • Gasbarri A, Sulli A, Packard M G (1997). The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog Neuropsychopharmacol Biol Psychiatry, 21(1): 1–22

    Article  CAS  PubMed  Google Scholar 

  • Gasbarri A, Verney C, Innocenzi R, Campana E, Pacitti C (1994). Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: a combined retrograde tracing and immunohistochemical study. Brain Res, 668(1-2): 71–79

    Article  PubMed  Google Scholar 

  • Harley C W (2007). Norepinephrine and the dentate gyrus. Prog Brain Res, 163: 299–318

    Article  CAS  PubMed  Google Scholar 

  • Höglinger G U, Rizk P, Muriel M P, Duyckaerts C, OertelWH, Caille I, Hirsch E C (2004). Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci, 7(7): 726–735

    Article  PubMed  Google Scholar 

  • Ito R, Robbins T W, Pennartz C M, Everitt B J (2008). Functional interaction between the hippocampus and nucleus accumbens shell is necessary for the acquisition of appetitive spatial context conditioning. J Neurosci, 28(27): 6950–6959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon O B, Paredes D, Gonzalez C M, Neddens J, Hernandez L, Vullhorst D, Buonanno A (2008). Neuregulin-1 regulates LTP at CA1 hippocampal synapses through activation of dopamine D4 receptors. Proc Natl Acad Sci USA, 105(40): 15587–15592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy G, Schupf N, Tang M X, Cote L J, Louis E D, Mejia H, Stern Y, Marder K (2002). Combined effect of age and severity on the risk of dementia in Parkinson’s disease. Ann Neurol, 51(6): 722–729

    Article  PubMed  Google Scholar 

  • Loughlin S E, Foote S L, Bloom F E (1986). Efferent projections of nucleus locus coeruleus: topographic organization of cells of origin demonstrated by three-dimensional reconstruction. Neuroscience, 18 (2): 291–306

    Article  CAS  PubMed  Google Scholar 

  • Loy R, Koziell D A, Lindsey J D, Moore R Y (1980). Noradrenergic innervation of the adult rat hippocampal formation. J Comp Neurol, 189(4): 699–710

    Article  CAS  PubMed  Google Scholar 

  • Meibach R C, Siegel A (1977). Efferent connections of the hippocampal formation in the rat. Brain Res, 124(2): 197–224

    Article  CAS  PubMed  Google Scholar 

  • Pohle W, Ott T, Müller-Welde P (1984). Identification of neurons of origin providing the dopaminergic innervation of the hippocampus. J Hirnforsch, 25(1): 1–10

    CAS  PubMed  Google Scholar 

  • Regensburger M, Prots I, Winner B (2014). Adult hippocampal neurogenesis in Parkinson’s disease: impact on neuronal survival and plasticity. Neural Plast, 2014: 454696

    PubMed  PubMed Central  Google Scholar 

  • Reymann K, Pohle W, Müller-Welde P, Ott T (1983). Dopaminergic innervation of the hippocampus: evidence for midbrain raphe neurons as the site of origin. Biomed Biochim Acta, 42(10): 1247–1255

    CAS  PubMed  Google Scholar 

  • Rosen Z B, Cheung S, Siegelbaum S A (2015). Midbrain dopamine neurons bidirectionally regulate CA3-CA1 synaptic drive. Nat Neurosci, 18(12): 1763–1771

    Article  CAS  PubMed  Google Scholar 

  • Samuels E R, Szabadi E (2008). Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr Neuropharmacol, 6(3): 235–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sara S J (2009). The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci, 10(3): 211–223

    Article  CAS  PubMed  Google Scholar 

  • Scatton B, Simon H, Le Moal M, Bischoff S (1980). Origin of dopaminergic innervation of the rat hippocampal formation. Neurosci Lett, 18(2): 125–131

    Article  CAS  PubMed  Google Scholar 

  • Schwab M E, Javoy-Agid F, Agid Y (1978). Labeled wheat germ agglutinin (WGA) as a new, highly sensitive retrograde tracer in the rat brain hippocampal system. Brain Res, 152(1): 145–150

    Article  CAS  PubMed  Google Scholar 

  • Schwarz L A, Miyamichi K, Gao X J, Beier K T, Weissbourd B, De Loach K E, Ren J, Ibanes S, Malenka R C, Kremer E J, Luo L (2015). Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature, 524(7563): 88–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seib D R, Corsini N S, Ellwanger K, Plaas C, Mateos A, Pitzer C, Niehrs C, Celikel T, Martin-Villalba A (2013). Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell, 12(2): 204–214

    Article  CAS  PubMed  Google Scholar 

  • Simon H, Le Moal M, Calas A (1979). Efferents and afferents of the ventral tegmental-A10 region studied after local injection of [3H] leucine and horseradish peroxidase. Brain Res, 178(1): 17–40

    Article  CAS  PubMed  Google Scholar 

  • Small S A, Schobel S A, Buxton R B, Witter M P, Barnes C A (2011). A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci, 12(10): 585–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith C C, Greene R W (2012). CNS dopamine transmission mediated by noradrenergic innervation. J Neurosci, 32(18): 6072–6080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Boström E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sui Y, Horne M K, Stanic D (2012). Reduced proliferation in the adult mouse subventricular zone increases survival of olfactory bulb interneurons. PLoS ONE, 7 (2): e31549

    Article  Google Scholar 

  • Suzuki K, Okada K, Wakuda T, Shinmura C, Kameno Y, Iwata K, Takahashi T, Suda S, Matsuzaki H, Iwata Y, Hashimoto K, Mori N (2010). Destruction of dopaminergic neurons in the midbrain by 6- hydroxydopamine decreases hippocampal cell proliferation in rats: reversal by fluoxetine. PLoS ONE, 5 (2): e9260

    Article  Google Scholar 

  • Swanson LW (1982). The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull, 9(1-6): 321–353

    Article  CAS  PubMed  Google Scholar 

  • Szabadi E (2013). Functional neuroanatomy of the central noradrenergic system. J Psychopharmacol, 27(8): 659–693

    Article  PubMed  Google Scholar 

  • Verney C, Baulac M, Berger B, Alvarez C, Vigny A, Helle K B (1985). Morphological evidence for a dopaminergic terminal field in the hippocampal formation of young and adult rat. Neuroscience, 14(4): 1039–1052

    Article  CAS  PubMed  Google Scholar 

  • Wisman L A, Sahin G, Maingay M, Leanza G, Kirik D (2008). Functional convergence of dopaminergic and cholinergic input is critical for hippocampus-dependent working memory. J Neurosci, 28 (31): 7797–7807

    Article  CAS  PubMed  Google Scholar 

  • Wyss J M, Swanson LW, Cowan W M (1979). A study of subcortical afferents to the hippocampal formation in the rat. Neuroscience, 4(4): 463–476

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte M. Ermine.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermine, C.M., Wright, J.L., Parish, C.L. et al. Combined immunohistochemical and retrograde tracing reveals little evidence of innervation of the rat dentate gyrus by midbrain dopamine neurons. Front. Biol. 11, 246–255 (2016). https://doi.org/10.1007/s11515-016-1404-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-016-1404-4

Keywords

Navigation