Skip to main content
Log in

Methodological framework for heart rate variability analysis during exercise: application to running and cycling stress testing

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Standard methodologies of heart rate variability analysis and physiological interpretation as a marker of autonomic nervous system condition have been largely published at rest, but not so much during exercise. A methodological framework for heart rate variability (HRV) analysis during exercise is proposed, which deals with the non-stationary nature of HRV during exercise, includes respiratory information, and identifies and corrects spectral components related to cardiolocomotor coupling (CC). This is applied to 23 male subjects who underwent different tests: maximal and submaximal, running and cycling; where the ECG, respiratory frequency and oxygen consumption were simultaneously recorded. High-frequency (HF) power results largely modified from estimations with the standard fixed band to those obtained with the proposed methodology. For medium and high levels of exercise and recovery, HF power results in a 20 to 40% increase. When cycling, HF power increases around 40% with respect to running, while CC power is around 20% stronger in running.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bailón R, Garatachea N, de la Iglesia I, Casajús JA, Laguna P (2013) Influence of running stride frequency in heart rate variability analysis during treadmill exercise testing. IEEE Trans Biomed Eng 60 (7):1796–1805

    Article  PubMed  Google Scholar 

  2. Bailón R, Laguna P, Mainardi L, Sörnmo L (2007) Analysis of heart rate variability using time-varying frequency bands based on respiratory frequency. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC07), vol 29, pp 6674–6677

  3. Bailón R, Laouini G, Grao C, Orini M, Laguna P, Meste O (2011) The integral pulse frequency modulation with time–varying threshold: application to heart rate variability analysis during exercise stress testing. IEEE Trans Biomed Eng 58(3):642–652

    Article  PubMed  Google Scholar 

  4. Bailón R, Mainardi L, Orini M, Sörnmo L, Laguna P (2010) Analysis of heart rate variability during exercise stress testing using respiratory information. Biomed Signal Process Control 5:299–310

    Article  Google Scholar 

  5. Bailón R, Serrano P, Laguna P (2011) Influence of time-varying mean heart rate in coronary artery disease diagnostic performance of heart rate variability indices from exercise stress testing. J Electrocardiol 44:445–452

    Article  PubMed  Google Scholar 

  6. Blain G, Meste O, Blain A, Bermon S (2009) Time–frequency analysis of heart rate variability reveals cardiolocomotor coupling during dynamic cycling exercise in humans. Amer J Physiol Heart Circ Physiol 296:1651–1659

    Article  Google Scholar 

  7. Borresen J, Lambert M (2008) Autonomic control of heart rate during and after exercise: measurements and implications for monitoring training status. Sports Med 38(8):633–646

    Article  PubMed  Google Scholar 

  8. Chan HL, Huang HH, Lin JL (2001) Time-frequency analysis of heart rate variability during transient segments. Ann Biomed Eng 29(11):983–996

    Article  CAS  PubMed  Google Scholar 

  9. Cottin F, Médigue C, Leprêtre P, Papelier Y, Koralsztein J, Billat V (2004) Heart rate variability during exercise performed below and above ventilatory threshold. Med Sci Sports Exerc 36(4):594–600

    Article  PubMed  Google Scholar 

  10. Cottin F, Papelier Y (2002) Regulation of cardiovascular system during dynamic exercise: integrative approach. Crit Rev Phys Rehabil Med 14(1):53–81

    Google Scholar 

  11. Cottin F, Papelier Y (2008) Effect of heavy exercise on spectral baroreflex sensitivity, heart rate, and blood pressure variability in well-trained humans. Amer J Physiol Heart Circ Physiol 295:H1150–H1155

    Article  CAS  Google Scholar 

  12. Drezner JA, Fischbach P, Froelicher V, Marek J, Pelliccia A, Prutkin JM, Schmied CM, Sharma S, Wilson MG, Ackerman MJ, Anderson J, Ashley E, Asplund CA, Baggish AL, Brjesson M, Cannon BC, Corrado D, DiFiori JP, Harmon KG, Heidbuchel H, Owens DS, Paul S, Salerno JC, Stein R, Vetter VL (2013) Normal electrocardiographic findings: recognising physiological adaptations in athletes. Br J Sports Med 47(3):125–136

    Article  PubMed  Google Scholar 

  13. Hernando A, Hernando D, Garatachea N, Casajús JA, Bailón R (2015) Attenuation of the influence of cardiolocomotor coupling in heart rate variability interpretation during exercise test. In: 37nd Annual International Conference of the IEEE EMBS: 1508–1511

  14. Hernando D, Bailón R, Almeida R, Hernández A (2014) QRS detection optimization in stress test recordings using evolutionary algorithms. XLI International Conference on Computing in Cardiology: 737–740

  15. Hottenrott K, Hoos O, Esperer H (2006) Heart rate variability and physical exercise. Current Status Herz 31(6):544–552

    Article  PubMed  Google Scholar 

  16. Laguna P, Moody GB, Mark R (1998) Power spectral density of unevenly sampled data by least-square analysis. IEEE Trans Biomed Eng 45(6):698–715

    Article  CAS  PubMed  Google Scholar 

  17. Llamedo M, Martínez JP (2014) QRS detectors performance comparison in public databases. XLI International Conference on Computing in Cardiology: 357–360

  18. Mainardi L (2009) On the quantification of heart rate variability spectral parameters using time–frequency and time-varying methods. Philosophical Transactions of the Royal Society of London A: Mathematical. Phys Eng Sci 367(1887):255–275

    Article  Google Scholar 

  19. Martin W, Flandrin P (1985) Wigner–Ville spectral analysis of nonstationary processes. IEEE Trans Acoust Speech Signal Process 33:1461–1470

    Article  Google Scholar 

  20. Martínez JP, Almeida R, Olmos S, Rocha AP, Laguna P (2004) A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans Biomed Eng 51(4):570–581

    Article  PubMed  Google Scholar 

  21. Mateo J, Laguna P (2003) Analysis of heart rate variability in the presence of ectopic beats using the heart timing signal. IEEE Trans Biomed Eng 50(3):334–343

    Article  PubMed  Google Scholar 

  22. Meste O, Khaddoumi B, Blain G, Bermon S (2005) Time-varying analysis methods and models for the respiratory and cardiac system coupling in graded exercise. IEEE Trans Biomed Eng 52(11):1921–1930

    Article  PubMed  Google Scholar 

  23. Meste O, Rix H, Blain G (2009) ECG processing for exercise test. Advanced Biosignal Processing. Springer, Berlin

    Google Scholar 

  24. Millet GP, Vleck VE, Bentley DJ (2009) Physiological differences between cycling and running: lessons from triathletes. Sports Med 39(3):179–206

    Article  PubMed  Google Scholar 

  25. Monfredi O, Lyashkov AE, Johnsen AB, Inada S, Schneider H, Wang R, Nirmalan M, Wisloff U, Maltsev VA, Lakatta EG, Zhang H, Boyett MR (2014) Biophysical characterization of the underappreciated and important relationship between heart rate variability and heart rate. Hypertension 64(6):1334–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Orini M, Bailón R, Enk R, Koelsch S, Mainardi L, Laguna P (2010) A method for continuously assessing the autonomic response to music-induced emotions through HRV analysis. Med Biol Eng Comput 48:423–433

    Article  PubMed  Google Scholar 

  27. Orini M, Bailón R, Mainardi L, Laguna P (2012) Synthesis of HRV signals characterized by predetermined time-frequency structure by means of time-varying ARMA models. Biomed Signal Process Control 7:141–150

    Article  Google Scholar 

  28. Pradhapan P, Tarvainen M, Nieminen T, Lehtinen R, Nikus K, Lehtimäki T, Kähönen M, Viik J (2014) Effect of heart rate correction on pre- and post-exercise heart rate variability to predict risk of mortality—an experimental study on the FINCAVAS cohort. Front Physiol 5:208. https://doi.org/10.3389/fphys.2014.00208

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rajendra AU, Paul JK, Kannathal N, Lim C, Suri J (2006) Heart rate variability: a review. Med Biol Eng Comput 44:1031–1051

    Article  Google Scholar 

  30. Sacha J, Barabach S, Statkiewicz-Barabach G, Sacha K, Müller A, Piskorski J (2013) How to strengthen or weaken the HRV dependence on heart rate—description of the method and its perspectives. Int J Cardiol 168:1660–1663

    Article  PubMed  Google Scholar 

  31. Sacha J, Pluta W (2005) Which heart rate is more variable: a slow or a fast one? It depends on the method of heart rate variability analysis. Folia Cardiol 12(suppl. D):1–4

    Google Scholar 

  32. Sacha J, Pluta W (2008) Alterations of an average heart rate change heart rate variability due to mathematical reasons. Int J Cardiol 128:444–447

    Article  PubMed  Google Scholar 

  33. Sarmiento S, García-Manso JM, Martín-González JM, Vaamonde D, Calderón J, Da Silva-Grigoletto ME (2013) Heart rate variability during high-intensity exercise. J Syst Sci Complex 26:104–116

    Article  Google Scholar 

  34. Wasserman K (2011) Principles of exercise testing and interpretation: including pathophysiology and clinical applications. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  35. Working group of ESC (1996) Heart rate variability. standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17:354–381

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) through Instituto de Salud Carlos III, by MINECO and FEDER under project TIN2014-53567-R, by Grupo Consolidado BSICoS ref:T96 from DGA and European Social Fund (EU). The computation was performed by the ICTS NANBIOSIS, more specifically by the High Performance Computing Unit of the CIBER-BBN at the University of Zaragoza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hernando.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernando, D., Hernando, A., Casajús, J.A. et al. Methodological framework for heart rate variability analysis during exercise: application to running and cycling stress testing. Med Biol Eng Comput 56, 781–794 (2018). https://doi.org/10.1007/s11517-017-1724-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-017-1724-9

Keywords

Navigation