Skip to main content
Log in

Fast DNA encoding algorithm inspired by the SPOOLing system

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The digital images are widely used in many fields, such as the military, government, and traffic. DNA encoding, as an important means of image encryption, has received increasing attention due to its powerful parallelism. But its low coding efficiency limits its application. This paper designs a quartering search method and proposes a fast DNA encoding algorithm inspired by the simultaneous peripheral operations online system. By trading off memory for time, the base combinations corresponding to 256 different pixel values are precomputed and prestored in the computer memory or hard disk in advance. When the corresponding DNA encoding or decoding operations are carried out, the data can be called to avoid a large number of repeated calculations. Experimental results and comparative analyses show that the proposed algorithm can greatly improve the efficiency of DNA encoding or decoding and be practical. Our algorithm can further facilitate the promotion and application of DNA encoding in the field of image encryption.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Li Z, Peng C, Tan W et al (2021) An efficient plaintext-related chaotic image encryption scheme based on compressive sensing [J]. Sensors 21(3):1–25

    Article  Google Scholar 

  2. Qin S, Tan Z, Zhou F et al (2021) A verifiable steganography-based secret image sharing scheme in 5G networks [J]. Secur Commun Netw 2021(1):1–14

    Google Scholar 

  3. Hassaballah M, Hameed MA, Awad AI et al (2021) A novel image steganography method for industrial internet of things security [J]. IEEE Trans Ind Inform 17(11):7743–7751

    Article  Google Scholar 

  4. Wen H, Jiajun Xu, Liao Y et al (2021) A security-enhanced image communication scheme using cellular neural network [J]. Entropy 23(8):1–17

    Article  Google Scholar 

  5. Kaur B, Dugre M, Hanna A et al (2021) An analysis of security vulnerabilities in container images for scientific data analysis [J]. Gigascience 10(6):1–7

    Article  CAS  Google Scholar 

  6. Zhang X, Yangming Hu (2021) Multiple-image encryption algorithm based on the 3D scrambling model and dynamic DNA coding [J]. Opt Laser Technol 141(9):1–16

    Google Scholar 

  7. Wang X, Guan N (2020) A novel chaotic image encryption algorithm based on extended Zigzag confusion and RNA [J]. Optic Laser Technol 131(11):1–17

    Google Scholar 

  8. Li P, Lo K-T (2020) Survey on JPEG compatible joint image compression and encryption algorithms [J]. IET Signal Proc 14(8):475–488

    Article  Google Scholar 

  9. Jithin KC, Sankar S (2020) Colour image encryption algorithm combining Arnold map, DNA sequence operation, and a Mandelbrot set [J]. J Inform Secur Appl 50(2):1–22

    Google Scholar 

  10. Coppersmith D (1994) The data encryption standard (DES) and its strength against attacks [J]. IBM J Res Dev 38(3):243–250

    Article  Google Scholar 

  11. Menezes A, Stebila D (2021) The advanced encryption standard: 20 years later [J]. IEEE Secur Priv 19(6):98–102

    Article  Google Scholar 

  12. Midoun MA, Wang X, Talhaoui MZ (2021) A sensitive dynamic mutual encryption system based on a new 1D chaotic map [J]. Opt Lasers Eng 139(4):1–13

    Google Scholar 

  13. Bao L, Tang J, Ding H et al (2021) The N-level (N >= 4) logistic cascade homogenized mapping for image encryption [J]. Nonlinear Dyn 105(2):1911–1935

    Article  Google Scholar 

  14. Kar M, Kumar A, Nandi D et al (2020) Image encryption using DNA coding and hyperchaotic system [J]. IETE Tech Rev 37(1):12–23

    Article  Google Scholar 

  15. Guesmi R, Ben Farah MA (2021) A new efficient medical image cipher based on hybrid chaotic map and DNA code [J]. Multimed Tools Appl 80(2):1925–1944

    Article  Google Scholar 

  16. Wang X, Zhao M (2021) An image encryption algorithm based on hyperchaotic system and DNA coding [J]. Opt Laser Technol 143(11):1–14

    Google Scholar 

  17. Telem ANK, Fotsin HB, Kengne J (2021) Image encryption algorithm based on dynamic DNA coding operations and 3D chaotic systems [J]. Multimed Tools Appl 80(12):19011–19041

    Article  Google Scholar 

  18. Liu Y, Zhang J (2020) A multidimensional chaotic image encryption algorithm based on DNA coding [J]. Multimed Tools Appl 79(29–30):21579–21601

    Article  Google Scholar 

  19. Wang X, Zhang H (2016) A novel image encryption algorithm based on genetic recombination and hyper-chaotic systems [J]. Nonlinear Dyn 83(1):333–346

    Article  Google Scholar 

  20. Mahmud M, ur-Rahman A, Lee M et al (2020) Evolutionary-based image encryption using RNA codons truth table [J]. Opt Laser Technol 121(1):1–13

    Google Scholar 

  21. Zhang X, Tian J (2022) Multiple-image encryption algorithm based on genetic central dogma [J]. Phys Scr 97(5):1–24

    Article  Google Scholar 

  22. Zhang Y, Huang H, Wang X et al (2021) A secure image encryption scheme based on genetic mutation and MLNCML chaotic system [J]. Multimed Tools Appl 80(13):19291–19305

    Article  Google Scholar 

  23. Denis R, Madhubala P (2021) Hybrid data encryption model integrating multi-objective adaptive genetic algorithm for secure medical data communication over cloud-based healthcare systems [J]. Multimed Tools Appl 80(14):21165–21202

    Article  Google Scholar 

  24. Chao Wu, Wang Y, Chen Ye et al (2019) Asymmetric encryption of multiple-image based on compressed sensing and phase-truncation in cylindrical diffraction domain [J]. Opt Commun 431(1):203–209

    Google Scholar 

  25. Jiayin Yu, Li C, Song X et al (2021) Parallel mixed image encryption and extraction algorithm based on compressed sensing [J]. Entropy 23(3):1–20

    Google Scholar 

  26. Shi M, Guo S, Song X et al (2021) Visual secure image encryption scheme based on compressed sensing and regional energy [J]. Entropy 23(5):1–25

    Article  Google Scholar 

  27. Ni R, Wang F, Wang J et al (2021) Multi-image encryption based on compressed sensing and deep learning in optical gyrator domain [J]. IEEE Photonics J 13(3):1–17

    Article  Google Scholar 

  28. Maniyath SR, Thanikaiselvan V (2020) An efficient image encryption using deep neural network and chaotic map [J]. Microprocess Microsyst 77(9):1–12

    Google Scholar 

  29. Lakshmi C, Thenmozhi K, Rayappan JBB et al (2020) Hopfield attractor-trusted neural network: an attack-resistant image encryption [J]. Neural Comput Appl 32(15):11477–11489

    Article  Google Scholar 

  30. Deepika J, Rajan C, Senthil T (2021) Security and privacy of cloud- and IoT-based medical image diagnosis using fuzzy convolutional neural network [J]. Comput Intell Neurosci 2021(3):1–17

    Article  Google Scholar 

  31. Yang F, Mou J, Sun K et al (2020) Lossless image compression-encryption algorithm based on BP neural network and chaotic system [J]. Multimed Tools Appl 79(27):19963–19992

    Article  Google Scholar 

  32. Bao Z, Xue R (2021) Avalanche effect of image encryption based on the Cycle-GAN [J]. Appl Opt 60(18):5320–5334

    Article  PubMed  Google Scholar 

  33. Jose A, Subramanian K (2021) High-capacity reversible data hiding using quotient multi pixel value differencing scheme in encrypted images by fuzzy based encryption [J]. Multimed Tools Appl 80(19):29453–29479

    Article  Google Scholar 

  34. Bao W, Yuan C, Zhang Y et al (2018) Mutli-features prediction of protein translational modification sites [J]. IEEE/ACM Trans Comput Biol Bioinf 15(5):1453–1460

    Article  CAS  Google Scholar 

  35. Bao W, Yang B, Chen B (2021) 2-hydr_Ensemble: Lysine 2-ydroxyisobutyrylation identification with ensemble method [J]. Chemom Intell Lab Syst 215(8):1–8

    Google Scholar 

  36. Yang B, Bao W, Wang J (2021) Active disease-related compound identification based on capsule network [J]. Brief Bioinform 23(1):1–9

    Google Scholar 

  37. Adleman LM (1994) Molecular computation of solutions to combinatorial problems [J]. Science 266(5187):1021–1024

    Article  CAS  PubMed  Google Scholar 

  38. Kang X, Guo Z (2020) A new color image encryption scheme based on DNA encoding and spatiotemporal chaotic system [J]. Sign Process-Image Commun 80(2):1–11

    Google Scholar 

  39. Wen W, Wei K, Zhang Y et al (2020) Colour light field image encryption based on DNA sequences and chaotic systems [J]. Nonlinear Dyn 99(2):1587–1600

    Article  Google Scholar 

  40. Zhang Q, Han J (2021) A novel color image encryption algorithm based on image hashing, 6D hyperchaotic and DNA coding [J]. Multimed Tools Appl 80(9):13841–13864

    Article  Google Scholar 

  41. Gong L, Jin Du, Wan J et al (2021) Image encryption scheme based on block scrambling, closed-loop diffusion, and DNA molecular mutation [J]. Secur Commun Netw 2021(2):1–16

    Google Scholar 

  42. Sustar P (2007) Crick’s notion of genetic information and the ‘central dogma’ of molecular biology [J]. Br J Philos Sci 58(1):13–24

    Article  Google Scholar 

  43. Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid [J]. Nature 171(4356):737–738

    Article  CAS  PubMed  Google Scholar 

  44. MdP Uddin, E Ali, MdA Marjan, et al (2014) Indexed binary search based efficient search generator for J2ME English to English dictionary [C]. Int Conf Inform Electron Vision (ICIEV), Univ Dhaka, Dhaka, Bangladesh (3):1–6

  45. P Moungnoul, N A-mapat (2019) Throughtput investigated of coexistence Wi-Fi and LTE-U [C]. 2019 17th International Conference on ICT and Knowledge Engineering, Siam Univ, Bangkok, Thailand, (11):18–21.

Download references

Acknowledgements

Authors are very grateful to two anonymous reviewers for their constructive and useful suggestions on this paper and the associate editor Gianvito Pio for dealing with everything in time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Tian, J. Fast DNA encoding algorithm inspired by the SPOOLing system. Med Biol Eng Comput 60, 2707–2720 (2022). https://doi.org/10.1007/s11517-022-02634-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02634-9

Keywords

Navigation