Skip to main content
Log in

Simultaneous Targeting of Bladder Tumor Growth, Survival, and Epithelial-to-Mesenchymal Transition with a Novel Therapeutic Combination of Acetazolamide (AZ) and Sulforaphane (SFN)

  • Original Research
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Background

Current chemotherapies for advanced stage metastatic bladder cancer often result in severe side effects, and most patients become drug resistant over time. Thus, there is a need for more effective therapies with minimal side effects.

Objective

The acid/base balance in tumor cells is essential for tumor cell functioning. We reasoned that simultaneous targeting of pH homeostasis and survival pathways would improve therapeutic efficacy. We evaluated the effectiveness of targeting pH homeostasis with the carbonic anhydrase inhibitor acetazolamide (AZ) in combination with the survival pathway targeting isothiocyanate sulforaphane (SFN) on the HTB-9 and RT112(H) human bladder tumor cell lines.

Materials and Methods

We assessed viability, proliferation, and survival in vitro and effect on xenografts in vivo.

Results

Combination AZ + SFN treatment induced dose-dependent suppression of growth, produced a potent anti-proliferative and anti-clonogenic effect, and induced apoptosis through caspase-3 and PARP activation. The anti-proliferative effect was corroborated by significant reductions in Ki-67, pHH3, cyclin D1, and sustained induction of the cell cycle inhibitors, p21 and p27. Both active p-Akt (Ser473) and p-S6 were significantly downregulated in the AZ + SFN combination treated cells with a concomitant inhibition of Akt kinase activity. The inhibitory effects of the AZ + SFN combination treatment showed similar efficacy as the dual PI3K/mTOR pathway inhibitor NVP-BEZ235, albeit at an expected higher dose. In terms of the effect on the metastatic potential of these bladder cancers, we found downregulated expression of carbonic anhydrase 9 (CA9) concomitant with reductions in both E-cadherin, N-cadherin, and vimentin proteins mitigating the epithelial-to-mesenchymal transition (EMT), suggesting negation of this program.

Conclusion

We suggest that reductions in these components could be linked with downregulation of the survival mediated Akt pathway and suggested an active role of the Akt pathway in bladder cancer. Altogether, our in vitro and pre-clinical model data support the potential use of an AZ + SFN combination for the treatment of bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ching CB, Hansel DE (2010) Expanding therapeutic target in bladder cancer: the PI3K/Akt/mTOR pathway. Lab Investig 90(10):1406–1414

    Article  CAS  PubMed  Google Scholar 

  2. Siegel RL, Miller MD, Jemal A (2015) Cancer statistics. CA Cancer J Clin 65:5–29

    Article  PubMed  Google Scholar 

  3. Chiong E, Lee IL, Dadbin A, Sabichi AL, Harris L, Urbauer D et al (2014) Effects of mTOR inhibitor everolimus (RAD001) on bladder cancer. Clin Cancer Res 17(9):2863–2878

    Article  Google Scholar 

  4. Lekas A, Papathomas TG, Papatsoris AG, Deliveliotis C, Lazaris AC (2008) Novel therapeutics in metastatic bladder cancer. Expert Opin Investig Drugs 17(12):1889–1899

    Article  CAS  PubMed  Google Scholar 

  5. Serrano C, Morales R, Suárez C, Núñez I, Valverde C, Rodón J et al (2012) Emerging therapies for urothelial cancer. Cancer Treat Rev 38(4):311–7

    Article  CAS  PubMed  Google Scholar 

  6. Sullivan R, Graham CH (2007) Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev 26(2):319–31

    Article  CAS  PubMed  Google Scholar 

  7. Beasley NJ, Wykoff CC, Watson PH et al (2001) Carbonic anhydrase IX, an edogeneous hypoxia marker expression in head and neck squamous cell carcinoma and its relationship to hypoxia, necrosis, and microvessel density. Cancer Res 61(13):5262–5267

    CAS  PubMed  Google Scholar 

  8. Loncaster JA, Harris AL, Davidson SE et al (2001) Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlation with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res 61(17):6394–6399

    CAS  PubMed  Google Scholar 

  9. Giatromanolaki A, Koukourakis MI, Sivridis E et al (2001) Expression of hypoxia inducible carbonic anhydrase -9 relates to angiogenic pathways and indecently to poor outcome in non-small lung cancer. Cancer Res 61(21):7992–7998

    CAS  PubMed  Google Scholar 

  10. Turner KJ, Crew JP, Wylkoff C et al (2002) The hypoxia-inducible genes VEGF and CA9 are differentially regulated in superficial vs invasive bladder cancer. Br J Cancer 86(8):1276–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parkkila S, Rajaniemi H, Parkkila AK, Kivela J, Waheed A, Pastorekova S et al (2000) Carbonic anhydrase inhibitor suppresses invasion of renal cancer cells in vitro. Proc Natl Acad Sci U S A 97(5):2220–2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carlin S, Khan N, Ku T, Longo VA, Larson SM, Smith-Jones PM (2010) Molecular targeting of carbonic anhydrase IX in mice with hypoxic HT29 colorectal tumor xenografts. PLoS One 5:1–9

    Article  Google Scholar 

  13. Mokhtari RB, Kumar S, Islam SI, Yazdanpanah M, Adeli K, Cutz E, et al. Combination of carboic anhydrase inhibitor, acetazolamide, and sulforaphane, reduces the viability and growth of bronchial carcinoid cell lines. BMC Cancer. 2013;13(378): doi 10.1186/1471-2407-13-378.

  14. Zhang Y, Talaly P, Cho CG et al (1999) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA 89:2399–2403

    Article  Google Scholar 

  15. Zhang Y, Tang L, Gonzales V (2003) Selected isothiocynates rapidly induces growth inhibition of cancer cells. Mol Cancer Ther 2:1045–1052

    CAS  PubMed  Google Scholar 

  16. Gamet-Payrastre L, Li P, Lumeau S et al (2000) Sulforaphane, a naturally occurring isothiocynates, induce cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res 60:1426–1433

    CAS  PubMed  Google Scholar 

  17. Myzac MC, Dashwood H (2006) Chemoprotection by sulforaphane keep one eye beyond Keap1. Cancer Lett 233:208–218

    Article  Google Scholar 

  18. Jackson SJ, Singletary KW (2004) Sulforaphane inhibits human MCF-7 mammary cancer cell mitotic progression and tubulin polymerization. J Natr 134:2229–2236

    CAS  Google Scholar 

  19. Shan Y, Sun C, Zhao X, Wu K, Cassidy A, Bao Y (2006) Effects of sulforaphane on cell growth, G0/G1 phase cell progression and apoptosis in human bladder cancer T24 cells. Int J Oncol 29:883–888

    CAS  PubMed  Google Scholar 

  20. Wang XF, Wu DM, Li BX, Lu YJ, Yang BF (2009) Synergistic inhibitory effects of sulforaphane and 5-fluorouracil in high and low metastatic cell lines of salivary gland adenoid cystic carcinoma. Phytother Res 23:303–307

    Article  CAS  PubMed  Google Scholar 

  21. Jiang H, Shang X, Wu H, Huang G, Wang Y, Al-Holou S et al (2009) Combination treatment with resveratrol and sulforaphane induces apoptosis in human U251 glioma cells. Neurochem Res 35:152–161

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rausch V, Liu L, Kallifatidis G, Baumann B, Mattern J, Gladkich J et al (2010) Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cells characteristics. Cancer Res 70:5004–5013

    Article  CAS  PubMed  Google Scholar 

  23. Vivano I, Sawyers CL (2002) The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat Rev 2:489–501

    Article  Google Scholar 

  24. Kalluri R, Weinberg RA (2009) The basis of epithelial-to-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McConkey DJ, Choi W, Marquis L, Martin F, Williams MB, Shah J et al (2009) Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev 28:335–344

    Article  CAS  PubMed  Google Scholar 

  26. Islam SS, Mokhtari RB, Noman AS, Uddin M, Rahman MZ, Azadi MA et al (2015) Sonic hedgehog (Shh) signaling promotes tumorigenicity and stemness via activation of epithelial-to-mesenchymal transition (EMT) in bladder cancer. Mol Carcinog. doi:10.1002/mc22300

    PubMed  Google Scholar 

  27. Rossi MR, Masters JR, Park S, Todd JH, Garret SH, Sens MA et al (2001) The immortalized UROtsa cell line as a potential cell culture model of human urothelium. Environ Health Perspect 109(8):801–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Islam SS, Mokhtari RB, El-Hout Y, Azadi MA, Alauddin M, Yeger H et al (2013) TGF-beta1 induces EMT reprograming of porcine bladder urothelial cells into collagen producing fibroblast-like cells in a Smad2/Smad3 dependent manner. J Cell Commun Signal

  29. Moon DG, Lee SE, Oh MM, Lee SC, Jeong SJ, Hong SK et al (2014) NVP-BEZ235, a dual PI3K/mTOR inhibitor synergistically potentiates the antitumor effects of cisplatin in bladder cancer cells. Int J Oncol 45(3):1027–1035

    CAS  PubMed Central  Google Scholar 

  30. Wang S, Wuun J, Savas L, Patwardhan N, Khan A (1998) The role of cell cycle regulatory proteins, cyclin D1, cyclin E and p27 in thyroid carcinogenesis. Hum Pathol 29:1304–1309

    Article  CAS  PubMed  Google Scholar 

  31. Jakublkova J, Sedlak J, Mithen R, Bao Y (2005) Role of PI3K/Akt and MEK/ERK signalling pathways in sulforaphane-and erucin-induced phase II enzymes and MRP2 transcription, G2/M arrest and cell death in Caco-2 cells. Biochem Pharmacol 69(11):1543–1552

    Article  Google Scholar 

  32. Roulin D, Weselle L, Dormond-Meuwly A, Dufu M, Demartines N, Dormond O (2011) Targeting cell carcinoma with NVP-BEZ235, a dual PI3K/mTOR inhibitor, in combination with sorafenib. Mol Cancer 10:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lock FE, McDonald PC, Lou Y, Serrano I, Chafe SC, Ostund C et al (2013) Targeting carbonic anhydrase IX depletes breast cancer stem cell within the hypoxic niche. Oncogene 32:5210–5219

    Article  CAS  PubMed  Google Scholar 

  34. Boyer B, Valles AM, Edme N (2000) Induction and regulation of epithelial-mesenchymal transition. Biochem Pharmacol 60:1091–1099

    Article  CAS  PubMed  Google Scholar 

  35. Wu Y, Enting D, Rudman S, Chowdury S (2015) Immunotherapy for urothelial cancer: from BCG to checkpoint inhibitors and beyond. Expert Rev Anticancer Ther 15:509–23

    Article  CAS  PubMed  Google Scholar 

  36. Kim HJ, Barajas B, Wang M, Nel AE (2008) Nrf2 activation by sulforaphane restores the age-related decrease of T(H)1 immunity:role of dendritic cells. J Allergy Clin Immunol 121:1255–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Margulis V, Shariat SF, Ashfaq R, Sagalowsky AI, Lotan Y (2006) Ki-67 is an independent predictor of bladder cancer outcome in patients with treated radical cystectomy for organ-confined disease. Clin Cancer Res 12(24):7369–7373

    Article  CAS  PubMed  Google Scholar 

  38. Ribalta T, McCutcheon IE, Aldape KD, Bruner JM, Fuller GN (2004) The mitosis-specific antibody anti-phosphohistone-3 (pHH3) facilitates rapid reliable grading of meningiomas according to WHO 2000 criteria. Am J Surg Pathol 28:1532–1536

    Article  PubMed  Google Scholar 

  39. Skaland I, Jansen EA, Gudlaugsson E, Klos J, Kjellevold KH, Soiland H et al (2007) Phosphohistone H3 expression has much stronger prognostic value than classical prognosticators in invasive lymph node-negative breast cancer patients less than 55 years of age. Mod Pathol 20:1307–1315

    Article  CAS  PubMed  Google Scholar 

  40. Ching CB, Hansel DE. Expanding therapeutic targets in bladder cancer: the PI3K/Akt/mTOR pathway. Lab Invest. 2010;90.

  41. Mohammadpour R, Safarian S, Ejelan F, Sheikholya-Lavasani Z, Abdolmohammadi MH, Shenabi N (2013) Acetazolamide triggers death-inducing autophagy in T-47D breast cancer cells. Cell Biol Int. doi:10.1002/cbin.10197

    PubMed Central  Google Scholar 

  42. Beekma KW, Bradley D, Hossain M (2007) New molecular targets and novel agents in the treatment of advanced urothelial cancer. Semin Oncol 34:154–164

    Article  Google Scholar 

  43. Brognard J, Clark AS, Ni Y, Denis PA (2001) Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotescellular survival and resistance to chemotherapy and radiation. Cancer Res 61:3986–3997

    CAS  PubMed  Google Scholar 

  44. Maria SM, Staufer F, Brueggen J, Furet P, Schnel C, Fritch C et al (2008) Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo anti tumor activity. Mol Cancer Ther 7:1851–1863

    Article  Google Scholar 

  45. Chaudhury D, Orsulic S, Ashok BT (2007) Antiproliferative activity of sulforaphane in Akt-overexpressing ovarian cancer cells. Mol Cancer Ther 6:334–345

    Article  Google Scholar 

  46. Brown KK, Toker A (2015) The phosphoinositide 3-kinase pathway and therapy resistance in cancer. F1000Prime Rep 7:13

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mi W, Ye Q, Liu S, She QB. AKT inhibition overcomes rapamycin resistance by enhancing the repressive function of PRAS40 on mTORC1/4E-BP1 axis. 2015; Oncotarget [Epub ahead of print]

  48. Holder AM, Akcakanat A, Adkins F, Evans K, Chen H, Wei C, Milton DR, Li Y, Do KA, Janku F, Meric-Bernstam F. Epithelial to mesenchymal transition is associated with rapamycin resistance. Oncotarget. 2015;Apr 13.

  49. Kim K, Cho YM, Park BH, Lee JL, Ro JY, Go H et al (2015) Histological and immunohistochemical markers for progression prediction in transurethrally resected high-grade non-muscle invasive bladder cancer. Int J Clin Exp Pathol 8:743–50

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Buti S, Ciccarese C, Zanoni D, Santoni M, Modena A, Maines F et al (2015) Prognostic and predictive factors in patients treated with chemotherapy for advanced urothelial cancer: where do we stand? Future Oncol 11:107–19

    Article  CAS  PubMed  Google Scholar 

  51. Fimognari C, Hrelia P (2007) Sulforaphane is a promising molecule for fighting cancers. Mutat Res 635:90–104

    Article  CAS  PubMed  Google Scholar 

  52. Ding Y, Paonessa JD, Randall KL, Argoti D et al (2010) Sulforaphane inhibits 4-aminobiphenyl-induced DNA damage in bladder cells and tissues. Carcinogenesis 31:1999–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Abbaoui B, Reidl KM, Ralston RA, Thomas-Ahner J, Schwarts SJ, Clinton SK, Mortazavi, A. Inhibition of bladder cancer by broccoli isothiocyanates sulforaphane and erucin: characterization, and interconversion. Mol Nutr Food Res. 2012;56(11): doi: 10.1002/mnfr.201200276.

  54. Qazi A, Pal J, Maitha M, Fulciniti M, Pellutu D, Nanjappa P et al (2010) Anticancer activity of a broccoli derivative, sulforaphane, in barret adenocarcinoma: potential use in chemoprevention and as adjuvant in chemotherapy. Translational Oncology 3(6):389–399

    Article  PubMed  PubMed Central  Google Scholar 

  55. Christiansen JJ, Rajasekaran AK (2006) Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 66:8319–8326

    Article  CAS  PubMed  Google Scholar 

  56. Grill D, Bellacosa A, Upson J, Klein-Szanto AJ, van Roy F, Lee-Kwon W et al (2003) The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res 63:2172–2178

    Google Scholar 

  57. Zhang J, Wei J, Lu J, Tong Z, Liao B, Yu B et al (2013) Overexpression of Rab25 contributes to metastasis of bladder cancer through induction of epithelial-to-mesenchymal transition and activation of Akt/GSK-3B/Snail signaling. Carcinogenesis. doi:10.1093/carcin/bgt187

    Google Scholar 

  58. Tang L, Zhang Y, Jobson HE et al (2006) Potent activation of mitochondria-mediated apoptosis and arrest in S and M phases of cancer cells by a broccoli sprout extract. Mol Cancer Ther 5:935–44

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully thank Dr. Darius Bagli, the Hospital for Sick Children, Toronto, ON, Canada, for the HTB-9 cell line and antibodies, Dr. DA Sens, University of North Dakota, ND, USA, for the UROtsa cell line. We further extend our thanks to Dr. Janet Rossant, the Hospital for Sick Children, Toronto, ON, Canada, for providing several antibodies.

Compliance with Ethical Standards

Funding

None.

Conflict of Interest

The authors Islam SS, Mokhtari RB, Akbari P, Hatina J, Yeger H, and Farhat WA declare that they have no conflict of interest. No funding source disclosed. All animal use was handled with the guidelines of the CCAC and Lab Animal Services, at the Hospital for Sick Children, Toronto, Canada; the Laboratory Animal Safety committee, Research Institute, SickKids, approved the protocols for animal use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S S Islam.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Frequency and absolute number of tumors in xenograft. Table represents total number of cells (1×106) implanted in each mouse (n = 5/group) and total number of tumors formed in each treatment group. (DOCX 17.2 kb)

Supplementary Table 2

In vivo xenograft tumor weight (gm) comparison within the group (Cont. vs AZ; AZ vs SFN and SFN vs AZ + SFN) in the drug treated mice. 1 × 106 cells were implanted in each mouse (n = 5/group) (Tumors were weighted on the day of 16 at experiment termination). (DOC 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, S.S., Mokhtari, R.B., Akbari, P. et al. Simultaneous Targeting of Bladder Tumor Growth, Survival, and Epithelial-to-Mesenchymal Transition with a Novel Therapeutic Combination of Acetazolamide (AZ) and Sulforaphane (SFN). Targ Oncol 11, 209–227 (2016). https://doi.org/10.1007/s11523-015-0386-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-015-0386-5

Keywords

Navigation