Skip to main content
Log in

Novel Insights into the Treatment of Imatinib-Resistant Gastrointestinal Stromal Tumors

  • Review Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Gastrointestinal stromal tumors (GIST) have emerged as a compelling clinical and biological model for the rational development of therapeutic strategies targeting critical oncogenic events over the past two decades. Oncogenic activation of KIT or PDGFRA receptor tyrosine kinases is the crucial driver for GIST tumor initiation, transformation, and cancer cell proliferation. Three tyrosine kinase inhibitors (TKIs) with KIT inhibitory activity – imatinib, sunitinib, and regorafenib – are approved to treat advanced GIST and have successfully exploited this addiction to KIT oncogenic signaling, demonstrating remarkable activity in a disease that historically had no successful systemic therapy options. However, GIST refractory to approved TKIs remain an unmet clinical need, as virtually all patients with metastatic GIST eventually progress on any given therapy. The main and best-established mechanism of resistance is the polyclonal expansion of multiple subpopulations harboring different secondary KIT mutations. The present review aims at summarizing current and forthcoming treatment directions in advanced imatinib-resistant GIST supported by a strong biological rationale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Demetri GD, von Mehren M, Antonescu CR, DeMatteo RP, Ganjoo KN, Maki RG, et al. NCCN task force report: update on the management of patients with gastrointestinal stromal tumors. J Natl Comp Cancer Netw JNCCN. 2010;8(Suppl 2):S1–41.

    Article  CAS  Google Scholar 

  2. Ducimetiere F, Lurkin A, Ranchere-Vince D, Decouvelaere AV, Peoc’h M, Istier L, et al. Incidence of sarcoma histotypes and molecular subtypes in a prospective epidemiological study with central pathology review and molecular testing. PLoS One. 2011;6(8):e20294. doi:10.1371/journal.pone.0020294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Corless CL, Barnett CM, Heinrich MC. Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer. 2011;11(12):865–78. doi:10.1038/nrc3143.

    CAS  PubMed  Google Scholar 

  4. Chi P, Chen Y, Zhang L, Guo X, Wongvipat J, Shamu T, et al. ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature. 2010;467(7317):849–53. doi:10.1038/nature09409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ, Joseph N, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003;299(5607):708–10. doi:10.1126/science.1079666.

    Article  CAS  PubMed  Google Scholar 

  6. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 1998;279(5350):577–80.

    Article  CAS  PubMed  Google Scholar 

  7. Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347(7):472–80. doi:10.1056/NEJMoa020461.

    Article  CAS  PubMed  Google Scholar 

  8. Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, Verweij J, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet. 2006;368(9544):1329–38. doi:10.1016/S0140-6736(06)69446-4.

    Article  CAS  PubMed  Google Scholar 

  9. Demetri GD, Reichardt P, Kang YK, Blay JY, Rutkowski P, Gelderblom H, et al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381(9863):295–302. doi:10.1016/S0140-6736(12)61857-1.

    Article  CAS  PubMed  Google Scholar 

  10. Serrano C, George S. Recent advances in the treatment of gastrointestinal stromal tumors. Ther Adv Med Oncol. 2014;6(3):115–27. doi:10.1177/1758834014522491.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bauer S, Joensuu H. Emerging agents for the treatment of advanced, Imatinib-resistant gastrointestinal stromal tumors: current status and future directions. Drugs. 2015;75(12):1323–34. doi:10.1007/s40265-015-0440-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Corless CL, Fletcher JA, Heinrich MC. Biology of gastrointestinal stromal tumors. J Clin Oncol. 2004;22(18):3813–25. doi:10.1200/JCO.2004.05.140.

    Article  CAS  PubMed  Google Scholar 

  13. Corless CL, McGreevey L, Haley A, Town A, Heinrich MC. KIT mutations are common in incidental gastrointestinal stromal tumors one centimeter or less in size. Am J Pathol. 2002;160(5):1567–72. doi:10.1016/S0002-9440(10)61103-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Von Mehren M, Heinrich MC, Joensuu H, Blanke CD, Wehre E, Demetri GD. Follow-up results after 9 years (yrs) of the ongoing, phase II B2222 trial of imatinib mesylate (IM) in patients (pts) with metastatic or unresectable KIT+ gastrointestinal stromal tumors (GIST). J Clin Oncol 29, 2011 ASCO Annual Meeting (suppl; abstr 10016).

  15. Demetri GD, Rankin CJ, Benjamin RS, Borden EC, Ryan CW, Priebat DA et al. Long-term disease control of advanced gastrointestinal stromal tumors (GIST) with imatinib (IM): 10-year outcomes from SWOG phase III intergroup trial S0033. J Clin Oncol 32:5s, 2014 ASCO Annual Meeting (suppl; abstr 10508).

  16. Casali PG, Zalcberg J, Le Cesne A, Reichardt P, Blay JY, Lindner LH et al. Ten-Year Progression-Free and Overall Survival in Patients With Unresectable or Metastatic GI Stromal Tumors: Long-Term Analysis of the European Organisation for Research and Treatment of Cancer, Italian Sarcoma Group, and Australasian Gastrointestinal Trials Group Intergroup Phase III Randomized Trial on Imatinib at Two Dose Levels. J Clin Oncol. 2017:JCO2016710228. doi:10.1200/JCO.2016.71.0228.

  17. Heinrich MC, Corless CL, Blanke CD, Demetri GD, Joensuu H, Roberts PJ, et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol. 2006;24(29):4764–74. doi:10.1200/JCO.2006.06.2265.

    Article  CAS  PubMed  Google Scholar 

  18. Tuveson DA, Willis NA, Jacks T, Griffin JD, Singer S, Fletcher CD, et al. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene. 2001;20(36):5054–8. doi:10.1038/sj.onc.1204704.

    Article  CAS  PubMed  Google Scholar 

  19. Subramanian S, West RB, Corless CL, Ou W, Rubin BP, Chu KM, et al. Gastrointestinal stromal tumors (GISTs) with KIT and PDGFRA mutations have distinct gene expression profiles. Oncogene. 2004;23(47):7780–90. doi:10.1038/sj.onc.1208056.

    Article  CAS  PubMed  Google Scholar 

  20. Blanke CD, Demetri GD, von Mehren M, Heinrich MC, Eisenberg B, Fletcher JA, et al. Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J Clin Oncol. 2008;26(4):620–5. doi:10.1200/JCO.2007.13.4403.

    Article  CAS  PubMed  Google Scholar 

  21. Heinrich MC, Maki RG, Corless CL, Antonescu CR, Harlow A, Griffith D, et al. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol. 2008;26(33):5352–9. doi:10.1200/JCO.2007.15.7461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liegl B, Kepten I, Le C, Zhu M, Demetri GD, Heinrich MC, et al. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol. 2008;216(1):64–74. doi:10.1002/path.2382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wardelmann E, Merkelbach-Bruse S, Pauls K, Thomas N, Schildhaus HU, Heinicke T, et al. Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin Cancer Res. 2006;12(6):1743–9. doi:10.1158/1078-0432.CCR-05-1211.

    Article  CAS  PubMed  Google Scholar 

  24. Demetri GD, Heinrich MC, Fletcher JA, Fletcher CD, Van den Abbeele AD, Corless CL, et al. Molecular target modulation, imaging, and clinical evaluation of gastrointestinal stromal tumor patients treated with sunitinib malate after imatinib failure. Clin Cancer Res. 2009;15(18):5902–9. doi:10.1158/1078-0432.CCR-09-0482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. George S, Wang Q, Heinrich MC, Corless CL, Zhu M, Butrynski JE, et al. Efficacy and safety of regorafenib in patients with metastatic and/or unresectable GI stromal tumor after failure of imatinib and sunitinib: a multicenter phase II trial. J Clin Oncol. 2012;30(19):2401–7. doi:10.1200/JCO.2011.39.9394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garner AP, Gozgit JM, Anjum R, Vodala S, Schrock A, Zhou T, et al. Ponatinib inhibits polyclonal drug-resistant KIT oncoproteins and shows therapeutic potential in heavily pretreated gastrointestinal stromal tumor (GIST) patients. Clin Cancer Res. 2014;20(22):5745–55. doi:10.1158/1078-0432.CCR-14-1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heinrich MC, Marino-Enriquez A, Presnell A, Donsky RS, Griffith DJ, McKinley A, et al. Sorafenib inhibits many kinase mutations associated with drug-resistant gastrointestinal stromal tumors. Mol Cancer Ther. 2012;11(8):1770–80. doi:10.1158/1535-7163.MCT-12-0223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kindler HL, Campbell NP, Wroblewski K, Maki RG, D’Adamo DR, Chow WA et al. Sorafenib (SOR) in patients (pts) with imatinib (IM) and sunitinib (SU)-resistant (RES) gastrointestinal stromal tumors (GIST): Final results of a University of Chicago Phase II Consortium trial. J Clin Oncol 29: 2011 ASCO Annual Meeting (suppl; abstr 10009).

  29. Park SH, Ryu MH, Ryoo BY, Im SA, Kwon HC, Lee SS, et al. Sorafenib in patients with metastatic gastrointestinal stromal tumors who failed two or more prior tyrosine kinase inhibitors: a phase II study of Korean gastrointestinal stromal tumors study group. Investig New Drugs. 2012;30(6):2377–83. doi:10.1007/s10637-012-9795-9.

    Article  CAS  Google Scholar 

  30. Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ, Flinn I, et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med. 2012;367(22):2075–88. doi:10.1056/NEJMoa1205127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Heinrich MC, von Mehren M, Demetri GD, Fletcher JA, Sun JG, Kerstein D et al. Ponatinib efficacy and safety in patients (pts) with advanced gastrointestinal stromal tumors (GIST) after tyrosine kinase inhibitor (TKI) failure: Results from a phase 2 study. J Clin Oncol 33, 2015 ASCO Annual Meeting (suppl; abstr 10535).

  32. Chan WW, Wise SC, Kaufman MD, Ahn YM, Ensinger CL, Haack T, et al. Conformational control inhibition of the BCR-ABL1 tyrosine kinase, including the gatekeeper T315I mutant, by the switch-control inhibitor DCC-2036. Cancer Cell. 2011;19(4):556–68. doi:10.1016/j.ccr.2011.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gajiwala KS, Wu JC, Christensen J, Deshmukh GD, Diehl W, DiNitto JP, et al. KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients. Proc Natl Acad Sci U S A. 2009;106(5):1542–7. doi:10.1073/pnas.0812413106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Smith BD, Hood MM, Wise SC, Kaufman MD, Lu WP, Rutkoski TJ et al. Abstract 2690: DCC-2618 is a potent inhibitor of wild-type and mutant KIT, including refractory Exon 17 D816 KIT mutations, and exhibits efficacy in refractory GIST and AML xenograft models. Proceedings: AACR 106th Annual Meeting 2015; Abstract 2690.

  35. NCT02571036. A Safety, Tolerability and PK Study of DCC-2618 in Patients With Advanced Malignancies.

  36. Evans EK, Hodous BL, Gardino AK, Davis A, Zhu J, Shutes A et al. Abstract 791: BLU-285, the first selective inhibitor of PDGFRα D842V and KIT Exon 17 mutants. Proceedings: AACR 106th Annual Meeting 2015; Abstract 791.

  37. Gebreyohannes YK, Zhai ME, Wozniak A, Wellens J, Cornillie J, Evans E et al. Efficacy of BLU-285, a novel, potent inhibitor of Exon 17 Mutant KIT and PDGFRA D842V, in patient-derived xenograft model of gastrointestinal stromal tumor (GIST). J Clin Oncol 34, 2016 ASCO Annual Meeting (suppl; abstr 11030).

  38. NCT02508532. Phase 1 Study of BLU-285 in Patients With Gastrointestinal Stromal Tumors (GIST) and Other Relapsed and Refractory Solid Tumors.

  39. Heinrich MC, Griffith D, McKinley A, Patterson J, Presnell A, Ramachandran A, et al. Crenolanib inhibits the drug-resistant PDGFRA D842V mutation associated with imatinib-resistant gastrointestinal stromal tumors. Clin Cancer Res. 2012;18(16):4375–84. doi:10.1158/1078-0432.CCR-12-0625.

    Article  CAS  PubMed  Google Scholar 

  40. Von Mehren M, Tetzlaff ED, Macaraeg M, Davis J, Agarwal V, Ramachandran A et al. Dose escalating study of crenolanib besylate in advanced GIST patients with PDGFRA D842V activating mutations. J Clin Oncol 34:5s, 2016 ASCO Annual Meeting (suppl; abstr 11010).

  41. NCT02847429. Randomized Trial of Crenolanib in Subjects With D842V Mutated GIST.

  42. Wagner AJ, Kindler H, Gelderblom H, Schoffski P, Bauer S, Hohenberger P, et al. A Phase II Study of a Human Anti-PDGFRalpha Monoclonal Antibody (Olaratumab, IMC-3G3) in Previously Treated Patients with Unresectable and/or Metastatic Gastrointestinal Stromal Tumors. Ann Oncol. 2017; doi:10.1093/annonc/mdw659.

    PubMed Central  Google Scholar 

  43. Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005;5(10):761–72. doi:10.1038/nrc1716.

    Article  CAS  PubMed  Google Scholar 

  44. Bauer S, Yu LK, Demetri GD, Fletcher JA. Heat shock protein 90 inhibition in imatinib-resistant gastrointestinal stromal tumor. Cancer Res. 2006;66(18):9153–61. doi:10.1158/0008-5472.CAN-06-0165.

    Article  CAS  PubMed  Google Scholar 

  45. Floris G, Debiec-Rychter M, Wozniak A, Stefan C, Normant E, Faa G, et al. The heat shock protein 90 inhibitor IPI-504 induces KIT degradation, tumor shrinkage, and cell proliferation arrest in xenograft models of gastrointestinal stromal tumors. Mol Cancer Ther. 2011;10(10):1897–908. doi:10.1158/1535-7163.MCT-11-0148.

    Article  CAS  PubMed  Google Scholar 

  46. Floris G, Sciot R, Wozniak A, Van Looy T, Wellens J, Faa G, et al. The novel HSP90 inhibitor, IPI-493, is highly effective in human gastrostrointestinal stromal tumor xenografts carrying heterogeneous KIT mutations. Clinical Cancer Res. 2011;17(17):5604–14. doi:10.1158/1078-0432.CCR-11-0562.

    Article  CAS  Google Scholar 

  47. Smyth T, Van Looy T, Curry JE, Rodriguez-Lopez AM, Wozniak A, Zhu M, et al. The HSP90 inhibitor, AT13387, is effective against imatinib-sensitive and -resistant gastrointestinal stromal tumor models. Mol Cancer Ther. 2012;11(8):1799–808. doi:10.1158/1535-7163.MCT-11-1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marino-Enriquez A, Ou WB, Cowley G, Luo B, Jonker AH, Mayeda M, et al. Genome-wide functional screening identifies CDC37 as a crucial HSP90-cofactor for KIT oncogenic expression in gastrointestinal stromal tumors. Oncogene. 2014;33(14):1872–6. doi:10.1038/onc.2013.127.

    Article  CAS  PubMed  Google Scholar 

  49. Wagner AJ, Chugh R, Rosen LS, Morgan JA, George S, Gordon M, et al. A phase I study of the HSP90 inhibitor retaspimycin hydrochloride (IPI-504) in patients with gastrointestinal stromal tumors or soft-tissue sarcomas. Clin Cancer Res. 2013;19(21):6020–9. doi:10.1158/1078-0432.CCR-13-0953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Demetri GD, Le Cesne A, Von Mehren M, Chmielowski B, Bauer S, Chow WA et al. Final results from a phase III study of IPI-504 (retaspimycin hydrochloride) versus placebo in patients (pts) with gastrointestinal stromal tumors (GIST) following failure of kinase inhibitor therapies. 2010 Gastrointestinal Cancers Symposium; Abstract 64.

  51. Demetri GD, Heinrich MC, Chmielowski B, Morgan JA, George S, Bradley GR et al. An open-label phase II study of the Hsp90 inhibitor ganetespib (STA-9090) in patients (pts) with metastatic and/or unresectable GIST. J Clin Oncol 29: 2011 ASCO Annual Meeting (suppl; abstr 10011).

  52. Dickson MA, Okuno SH, Keohan ML, Maki RG, D’Adamo DR, Akhurst TJ, et al. Phase II study of the HSP90-inhibitor BIIB021 in gastrointestinal stromal tumors. Ann Oncol. 2013;24(1):252–7. doi:10.1093/annonc/mds275.

    Article  CAS  PubMed  Google Scholar 

  53. Chiang NJ, Yeh KH, Chiu CF, Chen JS, Yen CC, Lee KD et al. Results of Phase II trial of AUY922, a novel heat shock protein inhibitor in patients with metastatic gastrointestinal stromal tumor (GIST) and imatinib and sunitinib therapy. J Clin Oncol 34, 2016 Gastrointestinal Cancers Symposium (suppl 4S; abstr 134).

  54. Shapiro GI, Kwak E, Dezube BJ, Yule M, Ayrton J, Lyons J, et al. First-in-human phase I dose escalation study of a second-generation non-ansamycin HSP90 inhibitor, AT13387, in patients with advanced solid tumors. Clin Cancer Res. 2015;21(1):87–97. doi:10.1158/1078-0432.CCR-14-0979.

    Article  CAS  PubMed  Google Scholar 

  55. Wagner AJ, Agulnik M, Heinrich MC, Mahadevan D, Riedel RF, von Mehren M, et al. Dose-escalation study of a second-generation non-ansamycin HSP90 inhibitor, onalespib (AT13387), in combination with imatinib in patients with metastatic gastrointestinal stromal tumour. Eur J Cancer. 2016;61:94–101. doi:10.1016/j.ejca.2016.03.076.

    Article  CAS  PubMed  Google Scholar 

  56. Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6(8):583–92. doi:10.1038/nrc1893.

    Article  CAS  PubMed  Google Scholar 

  57. Bauer S, Parry JA, Muhlenberg T, Brown MF, Seneviratne D, Chatterjee P, et al. Proapoptotic activity of bortezomib in gastrointestinal stromal tumor cells. Cancer Res. 2010;70(1):150–9. doi:10.1158/0008-5472.CAN-09-1449.

    Article  CAS  PubMed  Google Scholar 

  58. Muhlenberg T, Zhang Y, Wagner AJ, Grabellus F, Bradner J, Taeger G, et al. Inhibitors of deacetylases suppress oncogenic KIT signaling, acetylate HSP90, and induce apoptosis in gastrointestinal stromal tumors. Cancer Res. 2009;69(17):6941–50. doi:10.1158/0008-5472.CAN-08-4004.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Floris G, Debiec-Rychter M, Sciot R, Stefan C, Fieuws S, Machiels K, et al. High efficacy of panobinostat towards human gastrointestinal stromal tumors in a xenograft mouse model. Clin Cancer Res. 2009;15(12):4066–76. doi:10.1158/1078-0432.CCR-08-2588.

    Article  CAS  PubMed  Google Scholar 

  60. Bauer S, Hilger RA, Muhlenberg T, Grabellus F, Nagarajah J, Hoiczyk M, et al. Phase I study of panobinostat and imatinib in patients with treatment-refractory metastatic gastrointestinal stromal tumors. Br J Cancer. 2014;110(5):1155–62. doi:10.1038/bjc.2013.826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kummar S, Chen HX, Wright J, Holbeck S, Millin MD, Tomaszewski J, et al. Utilizing targeted cancer therapeutic agents in combination: novel approaches and urgent requirements. Nat Rev Drug Discov. 2010;9(11):843–56. doi:10.1038/nrd3216.

    Article  CAS  PubMed  Google Scholar 

  62. Yap TA, Omlin A, de Bono JS. Development of therapeutic combinations targeting major cancer signaling pathways. J Clin Oncol. 2013;31(12):1592–605. doi:10.1200/JCO.2011.37.6418.

    Article  CAS  PubMed  Google Scholar 

  63. Verweij J, Disis ML, Cannistra SA. Phase I studies of drug combinations. J Clin Oncol. 2010;28(30):4545–6. doi:10.1200/JCO.2010.30.6282.

    Article  PubMed  Google Scholar 

  64. Zhu MJ, Ou WB, Fletcher CD, Cohen PS, Demetri GD, Fletcher JA. KIT oncoprotein interactions in gastrointestinal stromal tumors: therapeutic relevance. Oncogene. 2007;26(44):6386–95. doi:10.1038/sj.onc.1210464.

    Article  CAS  PubMed  Google Scholar 

  65. Duensing A, Medeiros F, McConarty B, Joseph NE, Panigrahy D, Singer S, et al. Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene. 2004;23(22):3999–4006. doi:10.1038/sj.onc.1207525.

    Article  CAS  PubMed  Google Scholar 

  66. Bauer S, Duensing A, Demetri GD, Fletcher JA. KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway. Oncogene. 2007;26(54):7560–8. doi:10.1038/sj.onc.1210558.

    Article  CAS  PubMed  Google Scholar 

  67. Mahadevan D, Cooke L, Riley C, Swart R, Simons B, Della Croce K, et al. A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Oncogene. 2007;26(27):3909–19. doi:10.1038/sj.onc.1210173.

    Article  CAS  PubMed  Google Scholar 

  68. Van Looy T, Wozniak A, Floris G, Sciot R, Li H, Wellens J, et al. Phosphoinositide 3-kinase inhibitors combined with imatinib in patient-derived xenograft models of gastrointestinal stromal tumors: rationale and efficacy. Clin Cancer Res. 2014;20(23):6071–82. doi:10.1158/1078-0432.CCR-14-1823.

    Article  CAS  PubMed  Google Scholar 

  69. Conley AP, Araujo D, Ludwig J, Ravi V, Samuels BL, Choi H et al. A randomized phase II study of perifosine (P) plus imatinib for patients with imatinib-resistant gastrointestinal stromal tumor (GIST). J Clin Oncol 27:15s, 2009 ASCO Annual Meeting (suppl; abstr 10563).

  70. Schoffski P, Reichardt P, Blay JY, Dumez H, Morgan JA, Ray-Coquard I, et al. A phase I-II study of everolimus (RAD001) in combination with imatinib in patients with imatinib-resistant gastrointestinal stromal tumors. Ann Oncol. 2010;21(10):1990–8. doi:10.1093/annonc/mdq076.

    Article  CAS  PubMed  Google Scholar 

  71. Dolly SO, Wagner AJ, Bendell JC, Kindler HL, Krug LM, Seiwert TY, et al. Phase I study of Apitolisib (GDC-0980), dual phosphatidylinositol-3-kinase and mammalian target of rapamycin kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2016; doi:10.1158/1078-0432.CCR-15-2225.

    PubMed  PubMed Central  Google Scholar 

  72. Wagner AJ, Bendell JC, Morgan JA, Butrynski JE, George S, Demetri GD et al. Tolerability and anti-tumor activity of the PI3K/mTOR inhibitor GDC-0980 in patients with GIST and other sarcomas on two Phase I studies. 2013 CTOS Annual Meeting Paper 047.

  73. NCT01468688. A Dose-finding Study of a Combination of Imatinib and BKM120 in the Treatment of 3rd Line GIST Patients.

  74. NCT01735968. A Dose-finding Study of a Combination of Imatinib and BYL719 in the Treatment of 3rd Line GIST Patients.

  75. Agaram NP, Wong GC, Guo T, Maki RG, Singer S, Dematteo RP, et al. Novel V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chromosom Cancer. 2008;47(10):853–9. doi:10.1002/gcc.20589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Miettinen M, Fetsch JF, Sobin LH, Lasota J. Gastrointestinal stromal tumors in patients with neurofibromatosis 1: a clinicopathologic and molecular genetic study of 45 cases. Am J Surg Pathol. 2006;30(1):90–6.

    Article  PubMed  Google Scholar 

  77. Ran L, Sirota I, Cao Z, Murphy D, Chen Y, Shukla S, et al. Combined inhibition of MAP kinase and KIT signaling synergistically destabilizes ETV1 and suppresses GIST tumor growth. Cancer Discov. 2015;5(3):304–15. doi:10.1158/2159-8290.CD-14-0985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chi P, Qin LX, D’Angelo SP, Dickson MA, Gounder MM, Keohan ML et al. MEK162 in Combination With Imatinib Mesylate in Patients With Untreated Advanced Gastrointestinal Stromal Tumor (GIST). J Clin Oncol 33, 2015 ASCO Annual Meeting (suppl; abstr 10507).

  79. Serrano C, Wang Y, Marino-Enriquez A, Lee JC, Ravegnini G, Morgan JA, et al. KRAS and KIT gatekeeper mutations confer polyclonal primary Imatinib resistance in GI stromal tumors: relevance of concomitant phosphatidylinositol 3-kinase/AKT dysregulation. J Clin Oncol. 2015;33(22):e93–6. doi:10.1200/JCO.2013.48.7488.

    Article  PubMed  Google Scholar 

  80. Azaro A, Marino D, Garrido-Castro A, Cruz C, Alsina M, Pérez J et al. PI3K and MEK inhibitor combination toxicities and relative dose intensity: Vall d’Hebron experience. EORTC 2014, P166.

  81. Cohen NA, Zeng S, Seifert AM, Kim TS, Sorenson EC, Greer JB, et al. Pharmacological inhibition of KIT activates MET signaling in gastrointestinal stromal tumors. Cancer Res. 2015;75(10):2061–70. doi:10.1158/0008-5472.CAN-14-2564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Javidi-Sharifi N, Traer E, Martinez J, Gupta A, Taguchi T, Dunlap J, et al. Crosstalk between KIT and FGFR3 promotes gastrointestinal stromal tumor cell growth and drug resistance. Cancer Res. 2015;75(5):880–91. doi:10.1158/0008-5472.CAN-14-0573.

    Article  CAS  PubMed  Google Scholar 

  83. Li F, Huynh H, Li X, Ruddy DA, Wang Y, Ong R, et al. FGFR-mediated reactivation of MAPK signaling attenuates antitumor effects of Imatinib in gastrointestinal stromal tumors. Cancer Discov. 2015;5(4):438–51. doi:10.1158/2159-8290.CD-14-0763.

    Article  CAS  PubMed  Google Scholar 

  84. NCT02257541. BGJ398 in Combination With Imatinib Mesylate in Patients With Untreated Advanced Gastrointestinal Stromal Tumor (GIST).

  85. NCT02216578. Ph II CABOGIST in GIST.

  86. Romeo S, Debiec-Rychter M, Van Glabbeke M, Van Paassen H, Comite P, Van Eijk R, et al. Cell cycle/apoptosis molecule expression correlates with imatinib response in patients with advanced gastrointestinal stromal tumors. Clin Cancer Res. 2009;15(12):4191–8. doi:10.1158/1078-0432.CCR-08-3297.

    Article  CAS  PubMed  Google Scholar 

  87. Schneider-Stock R, Boltze C, Lasota J, Miettinen M, Peters B, Pross M, et al. High prognostic value of p16INK4 alterations in gastrointestinal stromal tumors. J Clin Oncol. 2003;21(9):1688–97. doi:10.1200/JCO.2003.08.101.

    Article  CAS  PubMed  Google Scholar 

  88. Lagarde P, Perot G, Kauffmann A, Brulard C, Dapremont V, Hostein I, et al. Mitotic checkpoints and chromosome instability are strong predictors of clinical outcome in gastrointestinal stromal tumors. Clin Cancer Res. 2012;18(3):826–38. doi:10.1158/1078-0432.CCR-11-1610.

    Article  CAS  PubMed  Google Scholar 

  89. Tornillo L, Duchini G, Carafa V, Lugli A, Dirnhofer S, Di Vizio D, et al. Patterns of gene amplification in gastrointestinal stromal tumors (GIST). Lab Investig J Tech Methods Pathol. 2005;85(7):921–31. doi:10.1038/labinvest.3700284.

    Article  CAS  Google Scholar 

  90. NCT01907607. Efficacy and Safety of PD-0332991 in Patients With Advanced Gastrointestinal Stromal Tumors Refractory to Imatinib and Sunitinib (CYCLIGIST).

  91. NCT02164240. Phase Ib Study of SUnitinib Alternating With REgorafenib in Patients With Metastatic and/or Unresectable GIST (SURE).

  92. NCT02365441. A Randomised Trial of Imatinib Alternating With Regorafenib Compared to Imatinib Alone for the First Line Treatment of Advanced Gastrointestinal Stromal Tumour (GIST) (ALT GIST).

  93. Nannini M, Astolfi A, Urbini M, Biasco G, Pantaleo MA. Liquid biopsy in gastrointestinal stromal tumors: a novel approach. J Transl Med. 2014;12:210. doi:10.1186/1479-5876-12-210.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Van den Abbeele AD, Gatsonis C, de Vries DJ, Melenevsky Y, Szot-Barnes A, Yap JT, et al. ACRIN 6665/RTOG 0132 phase II trial of neoadjuvant imatinib mesylate for operable malignant gastrointestinal stromal tumor: monitoring with 18F-FDG PET and correlation with genotype and GLUT4 expression. J Nucl Med. 2012;53(4):567–74. doi:10.2967/jnumed.111.094425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bardsley MR, Horvath VJ, Asuzu DT, Lorincz A, Redelman D, Hayashi Y, et al. Kitlow stem cells cause resistance to kit/platelet-derived growth factor alpha inhibitors in murine gastrointestinal stromal tumors. Gastroenterology. 2010;139(3):942–52. doi:10.1053/j.gastro.2010.05.083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Edris B, Willingham SB, Weiskopf K, Volkmer AK, Volkmer JP, Muhlenberg T, et al. Anti-KIT monoclonal antibody inhibits imatinib-resistant gastrointestinal stromal tumor growth. Proc Natl Acad Sci U S A. 2013;110(9):3501–6. doi:10.1073/pnas.1222893110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim TS, Cavnar MJ, Cohen NA, Sorenson EC, Greer JB, Seifert AM, et al. Increased KIT inhibition enhances therapeutic efficacy in gastrointestinal stromal tumor. Clin Cancer Res. 2014;20(9):2350–62. doi:10.1158/1078-0432.CCR-13-3033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. NCT02401815. PLX9486 as a Single Agent and in Combination With PLX3397 in Patients With Advanced Solid Tumors.

  99. Balachandran VP, Cavnar MJ, Zeng S, Bamboat ZM, Ocuin LM, Obaid H, et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat Med. 2011;17(9):1094–100. doi:10.1038/nm.2438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Reilley M, Bailey AM, Subbiah V, Janku F, Naing A, Falchook GS et al. Phase I clinical trial of combination imatinib and ipilimumab in patients with advanced malignancies. J Clin Oncol 34, 2016 ASCO Annual Meeting (suppl; abstr 3054).

  101. NCT01643278. Dasatinib and Ipilimumab in Treating Patients With Gastrointestinal Stromal Tumors or Other Sarcomas That Cannot Be Removed by Surgery or Are Metastatic.

  102. Menard C, Blay JY, Borg C, Michiels S, Ghiringhelli F, Robert C, et al. Natural killer cell IFN-gamma levels predict long-term survival with imatinib mesylate therapy in gastrointestinal stromal tumor-bearing patients. Cancer Res. 2009;69(8):3563–9. doi:10.1158/0008-5472.CAN-08-3807.

    Article  CAS  PubMed  Google Scholar 

  103. Casey SC, Tong L, Li Y, Do R, Walz S, Fitzgerald KN, et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science. 2016;352(6282):227–31. doi:10.1126/science.aac9935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. NCT02232620. A Study of BBI503 in Adult Patients With Advanced Gastrointestinal Stromal Tumors.

  105. Wang Y, Marino-Enriquez A, Bennett RR, Zhu M, Shen Y, Eilers G, et al. Dystrophin is a tumor suppressor in human cancers with myogenic programs. Nat Genet. 2014;46(6):601–6. doi:10.1038/ng.2974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Serrano.

Ethics declarations

Funding

This work has been supported by a SARC Sarcoma Spore (1U54CA168512–01) and an Instituto de Salud Carlos III PI16/01371 grants (both to César Serrano).

Conflict of Interest

César Serrano has received grants from Deciphera Pharmaceuticals and Bayer Healthcare, and payment for lectures including service on speaker bureaus from Bayer Healthcare. Claudia Valverde has received consulting fees (advisory boards) from Novartis, Pfizer, and Bayer, and payments for educational lectures from Novartis and Bayer. Suzanne George has received grants from Pfizer and Bayer, consulting fees or honorarium from AstraZeneca (pending) and Deciphera (pending), and clinical trial support from Deciphera and Blueprint Medicines. All other authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrano, C., George, S., Valverde, C. et al. Novel Insights into the Treatment of Imatinib-Resistant Gastrointestinal Stromal Tumors. Targ Oncol 12, 277–288 (2017). https://doi.org/10.1007/s11523-017-0490-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-017-0490-9

Keywords

Navigation