Skip to main content
Log in

Spatial Analysis of Multi-species Exclusion Processes: Application to Neural Crest Cell Migration in the Embryonic Gut

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Hindbrain (vagal) neural crest cells become relatively uniformly distributed along the embryonic intestine during the rostral to caudal colonization wave which forms the enteric nervous system (ENS). When vagal neural crest cells are labeled before migration in avian embryos by in ovo electroporation, the distribution of labeled neural crest cells in the ENS varies vastly. In some cases, the labeled neural crest cells appear evenly distributed and interspersed with unlabeled neural crest cells along the entire intestine. However, in most specimens, labeled cells occur in relatively discrete patches of varying position, area, and cell number. To determine reasons for these differences, we use a discrete cellular automata (CA) model incorporating the underlying cellular processes of neural crest cell movement and proliferation on a growing domain, representing the elongation of the intestine during development. We use multi-species CA agents corresponding to labeled and unlabeled neural crest cells. The spatial distributions of the CA agents are quantified in terms of an index. This investigation suggests that (i) the percentage of the initial neural crest cell population that is labeled and (ii) the ratio of cell proliferation to motility are the two key parameters producing the extreme differences in spatial distributions observed in avian embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allan, I. J., & Newgreen, D. F. (1980). The origin and differentiation of enteric neurons of the intestine of the fowl embryo. Am. J. Anat., 157, 137–154.

    Article  Google Scholar 

  • Bhattacharyya, S., Kulesa, P. M., & Fraser, S. E. (2008). Vital labeling of embryonic cells using fluorescent dyes and proteins. Methods Cell Biol., 87, 187–210.

    Article  Google Scholar 

  • Binder, B. J., & Landman, K. A. (2009). Exclusion processes on a growing domain. J. Theor. Biol., 259, 541–551.

    Article  Google Scholar 

  • Binder, B. J., & Landman, K. A. (2011). Quantifying evenly distributed states in exclusion and non-exclusion processes. Phys. Rev. E, 83, 041914.

    Article  Google Scholar 

  • Binder, B. J., Landman, K. A., Simpson, M. J., Mariani, M., & Newgreen, D. F. (2008). Modeling proliferative tissue growth: a general approach and an avian case study. Phys. Rev. E, 78, 031912.

    Article  Google Scholar 

  • Diggle, P. J. (1983). Statistical analysis of spatial point patterns. London: Academic Press.

    MATH  Google Scholar 

  • Hao, M. M., Anderson, R. B., & Young, H. M. (2009). Development of enteric neuron diversity. J. Cell Mol. Med., 13, 1193–1210.

    Article  Google Scholar 

  • Jones, S. W. (1991). The enhancement of mixing by chaotic advection. Phys. Fluids A, 3, 1081.

    Article  Google Scholar 

  • Newgreen, D., & Young, H. M. (2002). Enteric nervous system: development and developmental disturbances-Part 1. Pediatr. Dev. Pathol., 5, 224–247.

    Google Scholar 

  • Newgreen, D. F., Southwell, B., Hartley, L., & Allan, I. J. (1996). Migration of enteric neural crest cells in relation to growth of the gut in avian embryos. Acta Anat., 157, 105–115.

    Article  Google Scholar 

  • Phelps, J. H., & Tucker, C. L. (2006). Lagrangian particle calculations of distributive mixing: limitations and applications. Chem. Eng. Sci., 61, 6826–6836.

    Article  Google Scholar 

  • Sato, Y., Kasai, T., Nakagawa, S., Tanabe, K., Watanabe, T., Kawakami, K., & Takahashi, Y. (2007). Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev. Biol., 305, 616–624.

    Article  Google Scholar 

  • Simkin, J. E., McKeown, S. J., & Newgreen, D. F. (2009). Focal electroporation in ovo. Dev. Dyn., 238, 3152–3155.

    Article  Google Scholar 

  • Simpson, M. J., Merrifield, A., Landman, K. A., & Hughes, B. D. (2007a). Simulating invasion with cellular automata: connecting cell-scale and population-scale properties. Phys. Rev. E, 76, 021918.

    Article  Google Scholar 

  • Simpson, M. J., Zhang, D. C., Mariani, M., Landman, K. A., & Newgreen, D. F. (2007b). Cell proliferation drives neural crest cell invasion of the intestine. Dev. Biol., 302, 553–568.

    Article  Google Scholar 

  • Simpson, M. J., Landman, K. A., & Hughes, B. D. (2010). Cell invasion with proliferation mechanisms motivated by time-lapse data. Physica A, 389, 3779–3790.

    Article  Google Scholar 

  • Young, H. M., Turner, K. N., & Bergner, A. J. (2005). The location and phenotype of proliferating neural-crest-derived cells in the developing mouse gut. Cell Tissue Res., 320, 1–9.

    Article  Google Scholar 

  • Zhang, D., Brinas, I. M., Binder, B. J., Landman, K. A., & Newgreen, D. F. (2010). Neural crest regionalisation for enteric nervous system formation: implications for Hirschsprung’s disease and stem cell therapy. Dev. Biol., 339, 280–294.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. Binder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binder, B.J., Landman, K.A., Newgreen, D.F. et al. Spatial Analysis of Multi-species Exclusion Processes: Application to Neural Crest Cell Migration in the Embryonic Gut. Bull Math Biol 74, 474–490 (2012). https://doi.org/10.1007/s11538-011-9703-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9703-z

Keywords

Navigation