Skip to main content
Log in

The Dynamics of Ascaris lumbricoides Infections

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

A Correction to this article was published on 29 August 2018

This article has been updated

Abstract

The Anderson–May model of human parasite infections and specifically that for the intestinal worm Ascaris lumbricoides is reconsidered, with a view to deriving the observed characteristic negative binomial distribution which is frequently found in human communities. The means to obtaining this result lies in reformulating the continuous Anderson–May model as a stochastic process involving two essential populations, the density of mature worms in the gut, and the density of mature eggs in the environment. The resulting partial differential equation for the generating function of the joint probability distribution of eggs and worms can be partially solved in the appropriate limit where the worm lifetime is much greater than that of the mature eggs in the environment. Allowing for a mean field nonlinearity, and for egg immigration from neighbouring communities, a negative binomial worm distribution can be predicted, whose parameters are determined by those in the continuous Anderson–May model; this result assumes no variability in predisposition to the infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 29 August 2018

    In the original article, the second author’s name was incorrect in the metadata. The given name is T. Déirdre, and the family name is Hollingsworth.

References

  • Adler FR, Kretzschmar M (1992) Aggregation and stability in parasite-host models. Parasitology 104:199–205

    Article  Google Scholar 

  • Anderson RM (1978) Regulation and stability of host-parasite population interactions. I. Regulatory processes. J Anim Ecol 47:219–249

    Article  Google Scholar 

  • Anderson RM, May RM (1985) Helminth infections of humans: mathematical models, population dynamics, and control. Adv Parasitol 24:1–101

    Article  Google Scholar 

  • Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford

    Google Scholar 

  • Anderson RM, Medley GF (1985) Community control of helminth infections of man by mass and selective chemotherapy. Parasitology 90:629–660

    Article  Google Scholar 

  • Anderson R, Hollingsworth TD, Truscott J, Brooker S (2012) Optimisation of mass chemotherapy to control soil-transmitted helminth infection. Lancet 379:289–290

    Article  Google Scholar 

  • Anderson TJC, Zizza CA, Leche GM, Scott ME, Solomons NW (1993) The distribution of intestinal helminth infections in a rural village in Guatemala. Mem Inst Oswaldo Cruz 88:53–65

    Article  Google Scholar 

  • Anderson TJC, Romero-Abal ME, Jaenike J (1995) Mitochondrial DNA and Ascaris microepidemiology: the composition of parasite populations from individual hosts, families and villages. Parasitology 110:221–229

    Article  Google Scholar 

  • Barbour AD, Kafetzaki M (1991) Modelling the overdispersion of parasite loads. Math Biosci 107:249–253

    Article  MATH  Google Scholar 

  • Bartlett MS (1960) Stochastic population models in ecology and epidemiology. Methuen, London

    MATH  Google Scholar 

  • Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, Hotez PJ (2006) Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367:1521–1532

    Article  Google Scholar 

  • Betson M, Nejsum P, Llewellyn-Hughes J, Griffin C, Atuhaire A, Arinaitwe M, Adriko M, Ruggiana A, Turyakira G, Kabatereine NB, Stothard JR (2012) Genetic diversity of Ascaris in southwestern Uganda. Trans R Soc Trop Med Hyg 106:75–83

    Article  Google Scholar 

  • Bottomley C, Isham V, Basáñez M-G (2005) Population biology of multispecies helminth infection: interspecific interactions and parasite distribution. Parasitology 131:417–433

    Article  Google Scholar 

  • Cairncross S, Blumenthal U, Kolsky P, Moraes L, Tayeh A (1996) The public and domestic domains in the transmission of disease. Trop Med Int Health 1:27–34

    Article  Google Scholar 

  • Cornell SJ (2010) Modelling parasite transmission and control. In: Michael E, Spear RC (eds) Modelling stochastic transmission processes in helminth infections, vol 673. Adv. Exper. Med. Biol. Landes Bioscience, Austin, Texas, pp 66–78

  • Cort WW, Stoll NR (1931) Studies on Ascaria lumbricoides and Tricuris trichiura in China. Am J Epidemiol 14:655–689

    Article  Google Scholar 

  • Cox FEG (2002) History of human parasitology. Clin Microbiol Revs 15:595–612

    Article  Google Scholar 

  • Crompton DWT (2001) Ascaris and ascariasis. Adv Parasitol 48:285–375

    Article  Google Scholar 

  • Forrester JE, Scott ME, Bundy DAP, Golden MHN (1988) Clustering of Ascaris lumbricoides and Trichuris trichiura infections within households. Trans R Soc Trop Med Hyg 82:282–288

    Article  Google Scholar 

  • Gaba S, Cabaret J, Ginot V, Silvestre A (2006) The early drug selection of nematodes to anthelmintics: stochastic transmission and population in refuge. Parasitology 133:345–356

    Article  Google Scholar 

  • Hadeler KP, Dietz K (1983) Nonlinear hyperbolic partial differential equations for the dynamics of parasite populations. Comp Math Appls 9:415–430

    Article  MathSciNet  MATH  Google Scholar 

  • Hall A, Holland C (2000) Geographical variation in Ascaris lumbricoides fecundity and its implications for helminth control. Parasitol Today 16:540–544

    Article  Google Scholar 

  • Herbert J, Isham V (2000) Stochastic host-parasite interaction models. J Math Biol 40:343–371

    Article  MATH  Google Scholar 

  • Holland C (ed) (2013) Ascaris: the neglected parasite. Elsevier, The Amsterdam

  • Hollingsworth TD, Pulliam JRC, Funk S, Truscott JE, Isham V, Lloyd AL (2015) Seven challenges for modelling indirect transmission: vector-borne diseases, macroparasites and neglected tropical diseases. Epidemics 10:16–20

    Article  Google Scholar 

  • Isham V (1995) Stochastic models of host-macroparasite interaction. Ann Appl Prob 5:720–740

    Article  MathSciNet  MATH  Google Scholar 

  • Jacquez JA, O’Neill P (1991) Reproduction numbers and thresholds in stochastic epidemic models I. Homogeneous populations. Math Biosci 107:161–186

    Article  MATH  Google Scholar 

  • Jia T-W, Melville S, Utzinger J, King CH, Zhou X-N (2012) Soil-transmitted helminth reinfection after drug treatment: a systematic review and meta-analysis. PLoS Negl Trop Dis 6(5):e1621

    Article  Google Scholar 

  • Kostitzin VA (1934) Symbiose, parasitisme et évolution. Hermann et Cie, Paris

    MATH  Google Scholar 

  • Kretschmar M, Adler FR (1993) Aggregated distributions in models for patchy populations. Theor Popul Biol 43:1–30

    Article  MATH  Google Scholar 

  • May RM, Anderson RM (1978) Regulation and stability of host-parasite population interactions. II. Regulatory processes. J Anim Ecol 47:249–267

    Article  Google Scholar 

  • Otto GF, Cort WW, Keller AE (1931) Environmental studies of families in Tennessee infested with Ascaris, Tricuris and hookworm. Am J Epidemiol 14:156–193

    Article  Google Scholar 

  • Pullan RL, Smith JL, Jasrasaria R, Brooker SJ (2014) Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors 7:37

    Article  Google Scholar 

  • Scott ME (2008) Ascaris lumbricoides: a review of its epidemiology and relationship to other infections. Ann Nestlé (Engl) 66:7–22

    Article  Google Scholar 

  • Stoll NR (1947) This wormy world. J Parasitol 33:1–18

    Article  Google Scholar 

  • Tallis GM, Leyton M (1966) A stochastic approach to the study of parasite populations. J Theor Biol 13:251–260

    Article  Google Scholar 

  • Tallis GM, Leyton MK (1969) Stochastic models of populations of helminthic parasites in the definitive host. I Math Biosci 4:39–48

    Article  MATH  Google Scholar 

  • Truscott JE, Hollingsworth TD, Brooker SJ, Anderson RM (2014) Can chemotherapy alone eliminate the transmission of soil transmitted helminths? Parasit Vectors 7:266

    Article  Google Scholar 

  • Tyson E (1683) Lumbricus teres, or some anatomical observations on the roundworm bred in human bodies. Phil Trans R Soc Lond 13:154–161

    Article  Google Scholar 

  • Walker M, Hall A, Basáñez M-G (2010) Trickle or clumped infection process? A stochastic model for the infection process of the parasitic roundworm of humans, Ascaris lumbricoides. Int J Parasitol 40:1381–1388

    Article  Google Scholar 

  • WHO (1996) Report of the WHO Informal Consultation on the use of chemotherapy for the control of morbidity due to soil-transmitted nematodes in humans. World Health Organization (WHO/CTD/SIP/96.2), Geneva

  • Williams D, Burke G, Hendley JO (1974) Ascariasis: a family disease. J Pediatr 84:853–854

    Article  Google Scholar 

Download references

Acknowledgments

A. C. F. acknowledges the support of the Mathematics Applications Consortium for Science and Industry (www.macsi.ul.ie) funded by the Science Foundation Ireland Grant 12/1A/1683.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Fowler.

Appendix

Appendix

1.1 Solution of (1)

We write (1) in characteristic form:

$$\begin{aligned} \dot{m}=1,&\dot{E}=-\mu _\mathrm{e}E,\dfrac{}{}\nonumber \\\dot{m}=1,&\dot{H}=-\mu _\mathrm{h}H,\dfrac{}{}\nonumber \\\dot{m}=1,&\dot{I}=-\mu _iI, \end{aligned}$$
(56)

with the boundary conditions (2) taking the parametric form

$$\begin{aligned} t=\tau ,\quad E=E_0(\tau ),\quad H=\beta 'L(\tau ),\quad I=H(\tau ,\tau _3)\quad \mathrm{at}\quad m=0 \end{aligned}$$
(57)

(these give the solutions for \(t>m\); for \(t<m\) we would use an initial condition at \(t=0\), but since m is finite, this just produces a transient which washes through the system). The solution of (56) and (57) is given parametrically by

$$\begin{aligned}&m=t-\tau ,\quad E=E_0(\tau )\hbox {e}^{-\mu _\mathrm{e}(t-\tau )},\quad H=\beta 'L(\tau )\hbox {e}^{-\mu _h(t-\tau )},\nonumber \\&I=H(\tau ,\tau _3)\hbox {e}^{-\mu _i(t-\tau )}, \end{aligned}$$
(58)

whence we obtain (3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fowler, A.C., Déirdre Hollingsworth, T. The Dynamics of Ascaris lumbricoides Infections. Bull Math Biol 78, 815–833 (2016). https://doi.org/10.1007/s11538-016-0164-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-016-0164-2

Keywords

Navigation