Skip to main content
Log in

A Multicellular Model of Intestinal Crypt Buckling and Fission

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Crypt fission is an in vivo tissue deformation process that is involved in both intestinal homeostasis and colorectal tumourigenesis. Despite its importance, the mechanics underlying crypt fission are currently poorly understood. Recent experimental development of organoids, organ-like buds cultured from crypt stem cells in vitro, has shown promise in shedding light on crypt fission. Drawing inspiration from observations of organoid growth and fission in vivo, we develop a computational model of a deformable epithelial tissue layer. Results from in silico experiments show the stiffness of cells and the proportions of cell subpopulations affect the nature of deformation in the epithelial layer. In particular, we find that increasing the proportion of stiffer cells in the layer increases the likelihood of crypt fission occurring. This is in agreement with and helps explain recent experimental work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland Science, New York

    Google Scholar 

  • Aurenhammer F, Klein R, Lee DT (2013) Voronoi diagrams and Delaunay triangulations. World Scientific, River Edge, NJ

    Book  MATH  Google Scholar 

  • Baker A, Bird D, Lang G, Cox TR, Erler J (2013) Lysyl oxidase enzymatic function increases stiffness to drive colorectal cancer progression through FAK. Oncogene 32(14):1863–1868

    Article  Google Scholar 

  • Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007

    Article  Google Scholar 

  • Beaulieu JF (1992) Differential expression of the VLA family of integrins along the crypt-villus axis in the human small intestine. J Cell Sci 102(3):427–436

    MathSciNet  Google Scholar 

  • Björck A (1996) Numerical methods for least squares problems. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Buske P, Galle J, Barker N, Aust G, Clevers H, Loeffler M (2011) A comprehensive model of the spatio-temporal stem cell and tissue organisation in the intestinal crypt. PLoS Comput Biol 7(1):e1001045

    Article  Google Scholar 

  • Buske P, Przybilla J, Loeffler M, Sachs N, Sato T, Clevers H, Galle J (2012) On the biomechanics of stem cell niche formation in the gut-modelling growing organoids. FEBS J 279(18):3475–3487

    Article  Google Scholar 

  • Cairnie AB, Millen BH (1975) Fission of crypts in the small intestine of the irradiated mouse. Cell Prolif 8(2):189–196

    Article  Google Scholar 

  • Cheng H, Bjerknes M (1985) Whole population cell kinetics and postnatal development of the mouse intestinal epithelium. Anat Rec 211(4):420–426

    Article  Google Scholar 

  • Dallon JC, Othmer HG (2004) How cellular movement determines the collective force generated by the Dictyostelium discoideum slug. J Theor Biol 231(2):203–222

    Article  MathSciNet  Google Scholar 

  • Denys H, Derycke L, Hendrix A, Westbroek W, Gheldof A, Narine K, Pauwels P, Gespach C, Bracke M, De Wever O (2008) Differential impact of TGF-\(\beta \) and EGF on fibroblast differentiation and invasion reciprocally promotes colon cancer cell invasion. Cancer Lett 266(2):263–274

    Article  Google Scholar 

  • Drasdo D, Loeffler M (2001) Individual-based models to growth and folding in one-layered tissues: intestinal crypts and early development. Nonlinear Anal Theory Methods Appl 47(1):245–256

    Article  MathSciNet  MATH  Google Scholar 

  • Dunn SJN, Appleton PL, Nelson SA, Näthke IS, Gavaghan DJ, Osborne JM (2012a) A two-dimensional model of the colonic crypt accounting for the role of the basement membrane and pericryptal fibroblast sheath. PLoS Comput Biol 8(5):e1002515. https://doi.org/10.1371/journal.pcbi.1002515

    Article  Google Scholar 

  • Dunn SJN, Fletcher AG, Chapman SJ, Gavaghan DJ, Osborne JM (2012b) Modelling the role of the basement membrane beneath a growing epithelial monolayer. J Theor Biol 298:82–91

    Article  Google Scholar 

  • Dunn SJN, Näthke IS, Osborne JM (2013) Computational models reveal a passive mechanism for cell migration in the crypt. PloS ONE 8(11):e80516

    Article  Google Scholar 

  • Edwards CM, Chapman SJ (2007) Biomechanical modelling of colorectal crypt budding and fission. Bull Math Biol 69(6):1927–1942

    Article  MathSciNet  MATH  Google Scholar 

  • Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Löchner D, Birchmeier W (1991) E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 113(1):173–185

    Article  Google Scholar 

  • Galle J, Loeffler M, Drasdo D (2005) Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro. Biophys J 88(1):62–75

    Article  Google Scholar 

  • Greaves LC, Preston SL, Tadrous PJ, Taylor RW, Barron MJ, Oukrif D, Leedham SJ, Deheragoda M, Sasieni P, Novelli MR et al (2006) Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proc Natl Acad Sci 103(3):714–719

    Article  Google Scholar 

  • Hannezo E, Prost J, Joanny JF (2011) Instabilities of monolayered epithelia: shape and structure of villi and crypts. Phys Rev Lett 107(7):078,104

    Article  Google Scholar 

  • Hosmer DW Jr, Lemeshow S (2004) Applied logistic regression. Wiley, Hoboken, NJ

    MATH  Google Scholar 

  • Langlands AJ, Almet AA, Appleton PL, Newton IP, Osborne JM, Näthke IS (2016) Paneth cell-rich regions separated by a cluster of Lgr5+ cells initiate crypt fission in the intestinal stem cell niche. PLoS Biol 14(6):e1002491. https://doi.org/10.1371/journal.pbio.1002491

    Article  Google Scholar 

  • Meineke FA, Potten CS, Loeffler M (2001) Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Prolif 34(4):253–266

    Article  Google Scholar 

  • Mirams GR, Fletcher AG, Maini PK, Byrne HM (2012) A theoretical investigation of the effect of proliferation and adhesion on monoclonal conversion in the colonic crypt. J Theor Biol 312:143–156

    Article  MathSciNet  MATH  Google Scholar 

  • Mirams GR, Arthurs CJ, Bernabeu MO, Bordas R, Cooper J, Corrias A, Davit Y, Dunn SJN, Fletcher AG, Harvey DG et al (2013) Chaste: an open source C++ library for computational physiology and biology. PLoS Comput Biol 9(3):e1002970

    Article  MathSciNet  Google Scholar 

  • Nelson M, Howard D, Jensen O, King J, Rose F, Waters S (2011) Growth-induced buckling of an epithelial layer. Biomech Model Mechanobiol 10(6):883–900

    Article  Google Scholar 

  • Osborne JM, Walter A, Kershaw SK, Mirams GR, Fletcher AG, Pathmanathan P, Gavaghan DJ, Jensen OE, Maini PK, Byrne HM (2010) A hybrid approach to multi-scale modelling of cancer. Philos Trans R Soc A Math Phys Eng Sci 368(1930):5013–5028

    Article  MathSciNet  MATH  Google Scholar 

  • Park HS, Goodlad RA, Wright NA (1995) Crypt fission in the small intestine and colon. A mechanism for the emergence of G6PD locus-mutated crypts after treatment with mutagens. Am J Pathol 147(5):1416

    Google Scholar 

  • Pin C, Watson AJ, Carding SR (2012) Modelling the spatio-temporal cell dynamics reveals novel insights on cell differentiation and proliferation in the small intestinal crypt. PLoS ONE 7(5):e37115

    Article  Google Scholar 

  • Pin C, Parker A, Gunning AP, Ohta Y, Johnson IT, Carding SR, Sato T (2015) An individual based computational model of intestinal crypt fission and its application to predicting unrestrictive growth of the intestinal epithelium. Integr Biol 7(2):213–228

    Article  Google Scholar 

  • Pitt-Francis J, Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Fletcher AG, Mirams GR, Murray PJ, Osborne JM, Walter A et al (2009) Chaste: a test-driven approach to software development for biological modelling. Comput Phys Commun 180(12):2452–2471

    Article  MathSciNet  MATH  Google Scholar 

  • Preston SL, Wong WM, Chan AOO, Poulsom R, Jeffery R, Goodlad RA, Mandir N, Elia G, Novelli M, Bodmer WF et al (2003) Bottom-up histogenesis of colorectal adenomas origin in the monocryptal adenoma and initial expansion by crypt fission. Cancer Res 63(13):3819–3825

    Google Scholar 

  • Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434(7035):843–850

    Article  Google Scholar 

  • Rothenberg ME, Nusse Y, Kalisky T, Lee JJ, Dalerba P, Scheeren F, Lobo N, Kulkarni S, Sim S, Qian D et al (2012) Identification of a cKit+ colonic crypt base secretory cell that supports Lgr5+ stem cells in mice. Gastroenterology 142(5):1195–1205

    Article  Google Scholar 

  • Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ et al (2009) Single Lgr5 stem cells build crypt villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265

    Article  Google Scholar 

  • Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469(7330):415–418

    Article  Google Scholar 

  • Snippert HJ, Schepers AG, van Es JH, Simons BD, Clevers H (2013) Biased competition between Lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion. EMBO reports, p e201337799

  • Süli E, Mayers DF (2003) An introduction to numerical analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Trier JS, Allan CH, Abrahamson DR, Hagen SJ (1990) Epithelial basement membrane of mouse jejunum. Evidence for laminin turnover along the entire crypt-villus axis. J Clin Investig 86(1):87

    Article  Google Scholar 

  • Van Leeuwen IMM, Mirams GR, Walter A, Fletcher AG, Murray PJ, Osborne JM, Varma S, Young SJ, Cooper J, Doyle B et al (2009) An integrative computational model for intestinal tissue renewal. Cell Prolif 42(5):617–636

    Article  Google Scholar 

  • Wright NA, Alison M (1984) The biology of epithelial cell populations, vol 1–2. Oxford University Press, Oxford

    Google Scholar 

  • Zaman MH, Trapani LM, Sieminski AL, MacKellar D, Gong H, Kamm RD, Wells A, Lauffenburger DA, Matsudaira P (2006) Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci 103(29):10,889–10,894

    Article  Google Scholar 

  • Žunić J, Hirota K (2008) Measuring shape circularity. In: Progress in pattern recognition, image analysis and applications. Proceedings of the 13th Iberoamerican congress on pattern recognition. Springer, New York, pp 94–101

Download references

Acknowledgements

Axel A. Almet, Barry D. Hughes and Kerry A. Landman were supported by the Australian Research Council (DP110100795). Axel A. Almet and James M. Osborne were funded by a University of Melbourne ECR Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Osborne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almet, A.A., Hughes, B.D., Landman, K.A. et al. A Multicellular Model of Intestinal Crypt Buckling and Fission. Bull Math Biol 80, 335–359 (2018). https://doi.org/10.1007/s11538-017-0377-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-017-0377-z

Keywords

Navigation