Skip to main content

Advertisement

Log in

Real-time underwater image enhancement: a systematic review

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

In recent years, deep sea and ocean explorations have attracted more attention in the marine industry. Most of the marine vehicles, including robots, submarines, and ships, would be equipped with automatic imaging of deep sea layers. There is a reason which the quality of the images taken by the underwater devices is not optimal due to water properties and impurities. Consequently, water absorbs a series of colors, so processing gets more difficult. Scattering and absorption are related to underwater imaging light and are called light attenuation in water. The examination has previously shown that the emergence of some inherent limitations is due to the presence of artifacts and environmental noise in underwater images. As a result, it is hard to distinguish objects from their backgrounds in those images in a real-time system. This paper discusses the effect of the software and hardware parts for the underwater image, surveys the state-of-art different strategies and algorithms in underwater image enhancement, and measures the algorithm performance from various aspects. We also consider the important conducted studies on the field of quality enhancement in underwater images. We have analyzed the methods from five perspectives: (a) hardware and software tools, (b) a variety of underwater imaging techniques, (c) improving real-time image quality, (d) identifying specific objectives in underwater imaging, and (e) assessments. Finally, the advantages and disadvantages of the presented real/non-real-time image processing techniques are addressed to improve the quality of the underwater images. This systematic review provides an overview of the major underwater image algorithms and real/non-real-time processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Jaffe et al. [11]

Fig. 2

Source: Murez et al. [23]

Fig. 3

Source: Ghani et al. [29] and Iqbal et al. [36]

Fig. 4

Source: Abonaser et al. [38]

Fig. 5

Source: Ancuti et al. [46]

Fig. 6

Source: Ghani et al. [51] and Lu et al. [52]

Fig. 7

Source: Wang et al. [81]

Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lu, H., Li, Y., Serikawa, S.: Computer vision for ocean observing. In: Artificial Intelligence and Computer Vision, pp. 1–16. Springer (2017) (ebook)

  2. Xu, R.: Particle characterization: light scattering methods, vol 13, 1st edn, pp. 56–110. Springer, Netherlands, Berlin (2001). ISBN 978-0-306-47124-7. https://doi.org/10.1007/0-306-47124-8 (ebook)

  3. Khosravi, M.R., Samadi, S.: Data compression in ViSAR sensor networks using non-linear adaptive weighting. J. Wireless. Com. Network. 2019(1), 1–8 (2019). https://doi.org/10.1186/s13638-019-1577-z

    Article  Google Scholar 

  4. Huo, X., Tong, X.G., Liu, K.Z., Ma, K.M.: A compound control method for the rejection of spatially periodic and uncertain disturbances of rotary machines and its implementation under uniform time sampling. Control Eng. Pract. 53, 68–78 (2016)

    Article  Google Scholar 

  5. Lu, H., Li, Y., Xu, X., Li, J., Liu, Z., Li, X., Serikawa, S.: Underwater image enhancement method using weighted guided trigonometric filtering and artificial light correction. J. Vis. Commun. Image Represent. 38, 504–516 (2016)

    Article  Google Scholar 

  6. Moghimi, M.K., Mohanna, F.: Underwater optical image coding for marine health monitoring based on DCT. Curr. Signal Transduct. Ther 14, 1–15 (2019)

    Google Scholar 

  7. Kim, J.H., Dowling, D.R.: Blind deconvolution of extended duration underwater signals. J. Acoust. Soc. Am. 135(4), 2200–2200 (2014)

    Article  Google Scholar 

  8. Priyadharsini, R., Sharmila, T.S., Rajendran, V.: An efficient edge detection technique using filtering and morphological operations for underwater acoustic images. In: Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies, p. 108. ACM (2016)

  9. Jeelani, A., Veena, M.B.: Denoising the underwater images by using adaptive filters. Adv. Image Video Process. 5(2), 01 (2017)

    Google Scholar 

  10. Lu, H., Li, Y., Zhang, Y., Chen, M., Serikawa, S., Kim, H.: Underwater optical image processing: a comprehensive review. Mob. Netw. Appl. 22(6), 1204–1211 (2017)

    Article  Google Scholar 

  11. Jaffe, J.S., Moore, K.D., McLean, J., Strand, M.P.: Underwater optical imaging: status and prospects. Oceanography 14(3), 64–75 (2001). https://doi.org/10.5670/oceanog.2001.24

    Article  Google Scholar 

  12. Caimi, F.M., Kocak, D.M., Dalgleish, F., Watson, J.: Underwater imaging and optics: Recent advances. In OCEANS 2008, pp. 1–9. IEEE (2008)

  13. Hitam, M.S., Awalludin, E.A., Yussof, W.N.J.H.W., Bachok, Z.: Mixture contrast limited adaptive histogram equalization for underwater image enhancement. In: Computer Applications Technology (ICCAT), 2013 International Conference on, pp. 1–5. IEEE (2013)

  14. Kocak, D.M., Dalgleish, F.R., Caimi, F.M., Schechner, Y.Y.: A focus on recent developments and trends in underwater imaging. Mar. Technol. Soc. J. 42(1), 52–67 (2008)

    Article  Google Scholar 

  15. Kocak, D.M., Caimi, F.M.: The current art of underwater imaging–with a glimpse of the past and vision of the future. Mar. Technol. Soc. J. 39(3), 5–26 (2005)

    Article  Google Scholar 

  16. Bouchette, G., Church, P., Mcfee, J.E., Adler, A.: Imaging of compact objects buried in underwater sediments using electrical impedance tomography. IEEE Trans. Geosci. Remote Sens. 52(2), 1407–1417 (2014)

    Article  Google Scholar 

  17. Torres-Méndez, L.A., Dudek, G.: Color correction of underwater images for aquatic robot inspection. In: International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 60–73. Springer, Berlin, Heidelberg (2005)

  18. Georgiades, C., German, A., Hogue, A., Liu, H., Prahacs, C., Ripsman, A., Dudek, G.: AQUA: an aquatic walking robot. In: Intelligent Robots and Systems, (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on, Vol. 4, pp. 3525–3531. IEEE, (2004)

  19. Jaffe, J.S.: Enhanced extended range underwater imaging via structured illumination. Opt. Express 18(12), 12328–12340 (2010)

    Article  Google Scholar 

  20. McLeod, D., Jacobson, J., Hardy, M., Embry, C.: Autonomous inspection using an underwater 3D LiDAR. In: Oceans-San Diego, 2013, pp. 1–8. IEEE, (2013)

  21. Tran, Q.D., Jang, G.W., Kwon, H.S., Cho, W.H., Cho, S.H., Cho, Y.H., Seo, H.S.: Shape optimization of acoustic lenses for underwater imaging. J. Mech. Sci. Technol. 30(10), 4633–4644 (2016)

    Article  Google Scholar 

  22. Khosravi, M.R., Basri, H., Rostami, H., Samadi, S.: Distributed random cooperation for VBF-based routing in high-speed dense underwater acoustic sensor networks. J. Supercomput. 74(11), 6184–6200 (2018)

    Article  Google Scholar 

  23. Murez, Z., Treibitz, T., Ramamoorthi, R., Kriegman, D.J.: Photometric stereo in a scattering medium. IEEE Trans. Pattern Anal. Mach. Intell. 39(9), 1880–1891 (2017). https://doi.org/10.1109/TPAMI.2016.2613862

    Article  Google Scholar 

  24. Treibitz, T., Schechner, Y.Y.: Turbid scene enhancement using multi-directional illumination fusion. IEEE Trans. Image Process. 21(11), 4662–4667 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Roser, M., Dunbabin, M., Geiger, A.: Simultaneous underwater visibility assessment, enhancement and improved stereo. In: Robotics and Automation (ICRA), 2014 IEEE International Conference on, pp. 3840–3847, (2014)

  26. Mori, K., Ogasawara, H., Nakamura, T., Tsuchiya, T., Endoh, N.: Design and convergence performance analysis of aspherical acoustic lens applied to ambient noise imaging in actual ocean experiment. Japn. J. Appl. Phys. 50(7S), 07HG09 (2011)

    Article  Google Scholar 

  27. Kussmann, J., Luenser, A., Beer, M., Ochsenfeld, C.: A reduced-scaling density matrix-based method for the computation of the vibrational Hessian matrix at the self-consistent field level. J. Chem. Phys. 142(9), 094101 (2015)

    Article  Google Scholar 

  28. Sundararajan, S.K., Gomathi, B.S., Priya, D.S.: Continuous set of image processing methodology for efficient image retrieval using BOW SHIFT and SURF features for emerging image processing applications. In 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), pp. 1–7. IEEE (2015)

  29. Ghani, A.S.A., Isa, N.A.M.: Underwater image quality enhancement through Rayleigh-stretching and averaging image planes. Int. J. Naval Arch. Ocean Eng. 6(4), 840–866 (2014)

    Article  Google Scholar 

  30. Ghani, A.S.A., Isa, N.A.M.: Underwater image quality enhancement through composition of dual-intensity images and Rayleigh-stretching. SpringerPlus 3(1), 757 (2014)

    Article  Google Scholar 

  31. Ghani, A.S.A., Isa, N.A.M.: Underwater Image Contrast Enhancement through Multilevel Histogram Modification Based on Color Channels Percentages (2014). https://doi.org/10.13140/RG.2.1.2037.6405

  32. Ghani, A.S.A., Isa, N.A.M.: Enhancement of low quality underwater image through integrated global and local contrast correction. Appl. Soft Comput. 37, 332–344 (2015)

    Article  Google Scholar 

  33. Ghani, A.S.A., Isa, N.A.M.: Underwater image quality enhancement through integrated color model with Rayleigh distribution. Appl. Soft Comput. 27, 219–230 (2015)

    Article  Google Scholar 

  34. Seemakurthy, K., Rajagopalan, A.N.: Deskewing of underwater images. IEEE Trans. Image Process. 24(3), 1046–1059 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Iqbal, K., Odetayo, M., James, A., Salam, R.A., Talib, A.Z.H.: Enhancing the low quality images using unsupervised colour correction method. In: Systems Man and Cybernetics (SMC), 2010 IEEE International Conference on, pp. 1703–1709. IEEE (2010)

  36. Iqbal, K., Salam, R.A., Osman, A., Talib, A.Z.: Underwater image enhancement using an integrated colour model. IAENG Int. J. Comput. Sci. 34(2), 239–244 (2007)

    Google Scholar 

  37. Chernov, V., Alander, J., Bochko, V.: Integer-based accurate conversion between RGB and HSV color spaces. Comput. Electr. Eng. 46, 328–337 (2015)

    Article  Google Scholar 

  38. AbuNaser, A., Doush, I.A., Mansour, N., Alshattnawi, S.: Underwater image enhancement using particle swarm optimization. J. Intell. Syst. 24(1), 99–115 (2014). https://doi.org/10.1515/jisys-2014-0012

    Article  Google Scholar 

  39. Panetta, K., Gao, C., Agaian, S.: Human-visual-system-inspired underwater image quality measures. IEEE J. Ocean. Eng. 41(3), 541–551 (2016)

    Article  Google Scholar 

  40. Xu, T., Yang, K., Xia, M., Li, W., Guo, W. Underwater linear object detection based on optical imaging. In: AOPC 2017: Optical Sensing and Imaging Technology and Applications, Vol. 10462, p. 1046221. International Society for Optics and Photonics (2017)

  41. Bianco, G., Neumann, L.: A fast enhancing method for non-uniformly illuminated underwater images. In: IEEE International Conferrence on OCEANS 2017 OCEANS 2017 - Anchorage, Anchorage, AK, pp. 1–6 (2017)

  42. Galdran, A., Pardo, D., Picón, A., Alvarez-Gila, A.: Automatic red-channel underwater image restoration. J. Vis. Commun. Image Represent. 26, 132–145 (2015). https://doi.org/10.1016/j.jvcir.2014.11.006

    Article  Google Scholar 

  43. Bianco, G., Muzzupappa, M., Bruno, F., Garcia, R., Neumann, L.: A new color correction method for underwater imaging. ISPRS Int. Arch. Photogramm. Remote Sens. Sp. Inf. Sci. 40(5), 25–32 (2015). https://doi.org/10.5194/isprsarchives-XL-5-W5-25-2015

    Article  Google Scholar 

  44. Li, C., Quo, J., Pang, Y., Chen, S., Wang, J.: Single underwater image restoration by blue-green channels dehazing and red channel correction. In: Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on, pp. 1731–1735. IEEE (2016)

  45. Fu, X., Fan, Z., Ling, M., Huang, Y., Ding, X.: Two-step approach for single underwater image enhancement. In: Intelligent Signal Processing and Communication Systems (ISPACS), 2017 International Symposium on, pp. 789–794. IEEE (2017)

  46. Ancuti, C.O., Ancuti, C., De Vleeschouwer, C., Bekaert, P.: Color balance and fusion for underwater image enhancement. IEEE Trans. Image Process. 27(1), 379–393 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Petit, F., Capelle-Laize, A.S., Carre, P.: Underwater image enhancement by attenuation inversion with quaternions. In: Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on, pp. 1177–1180. IEEE (2009)

  48. Gonzalez, R.C.: Digital image processing. (2016)

  49. Hurtós, N., Ribas, D., Cufí, X., Petillot, Y., Salvi, J.: Fourier-based registration for robust forward-looking sonar mosaicing in low-visibility underwater environments. J. Field Rob. 32(1), 123–151 (2015)

    Article  Google Scholar 

  50. Bernotas, M., Nelson, C.: Probability density function analysis for optimization of underwater optical communications systems. In: OCEANS'15 MTS/IEEE Washington, pp. 1–8. IEEE (2015)

  51. Ghani, A.S.A., Isa, N.A.M.: Homomorphic filtering with image fusion for enhancement of details and homogeneous contrast of underwater image. (2015)

  52. Lu, H., Li, Y., Hu, X., Yang, S., Serikawa, S.: Real-time underwater image contrast enhancement through guided filtering. In: International Conference on Image and Graphics, pp. 137–147. Springer, Cham (2015)

  53. Serikawa, S., Lu, H.: Underwater image dehazing using joint trilateral filter. Comput. Electr. Eng. 40(1), 41–50 (2014)

    Article  Google Scholar 

  54. Namdeo, A., Bhadoriya, S.S.: A review on image enhancement techniques with its advantages and disadvantages. Int. J. Sci. Adv. Res. Technol. 2(5), 171–182 (2016)

    Google Scholar 

  55. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  56. Qiao, X., Bao, J., Zhang, H., Zeng, L., Li, D.: Underwater image quality enhancement of sea cucumbers based on improved histogram equalization and wavelet transform. Inf. Process. Agric. 4(3), 206–213 (2017)

    Google Scholar 

  57. Khosravi, M.R., Moghimi, M.K.: Underwater optical image processing. Mod. Approach Oceanogr. Petrochem. Sci. 1(1), 1–2 (2018)

    Google Scholar 

  58. Jaybhay, J., Shastri, R.: A study of speckle noise reduction filters. Signal Image Process. Int. J. (SIPIJ) 6(3), 71–80 (2015). https://doi.org/10.5121/sipij.2015.6306

    Article  Google Scholar 

  59. Shechtman, Y., Weiss, L.E., Backer, A.S., Sahl, S.J., Moerner, W.E.: Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions. Nano Lett. 15(6), 4194–4199 (2015)

    Article  Google Scholar 

  60. Rezaee, K., Haddadnia, J., Tashk, A.: Optimized clinical segmentation of retinal blood vessels by using combination of adaptive filtering, fuzzy entropy and skeletonization. Appl. Soft Comput. 52, 937–951 (2017)

    Article  Google Scholar 

  61. Ghani, A.S.A., Isa, N.A.M.: Automatic system for improving underwater image contrast and color through recursive adaptive histogram modification. Comput. Electron. Agric. 141, 181–195 (2017)

    Article  Google Scholar 

  62. Althaf, S.K., Basha, J., Shaik, M.A.: A Study on histogram equalization techniques for underwater image enhancement. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2(5), 210–216 (2017)

    Google Scholar 

  63. Fiuzy, M.M., Rezaei, K.F., Haddadnia, J.M.: A novel approach for segmentation special region in an image. Majlesi J. Multimed. Process., 1(2), (2011)

  64. Rezaee, A., Rezaee, K., Haddadnia, J., Gorji, H.T.: Supervised meta-heuristic extreme learning machine for multiple sclerosis detection based on multiple feature descriptors in MR images. SN Appl. Sci. 2, 1–19 (2020)

    Article  Google Scholar 

  65. Badgujar, P.N., Singh, J.K.: Underwater image enhancement using generalized histogram equalization, discrete wavelet transform & KL-transform. Int. J. Innov. Res. Sci. Eng. Technol. (IJIRSET) 6(6), 11834–11840 (2017). https://doi.org/10.15680/IJIRSET.2017.0606169

    Article  Google Scholar 

  66. Lu, H., Li, Y., Nakashima, S., Kim, H., Serikawa, S.: Underwater image super-resolution by descattering and fusion. IEEE Access 5, 670–679 (2017)

    Article  Google Scholar 

  67. Galusha, A., Galusha, G., Keller, J.M., Zare, A: A fast target detection algorithm for underwater synthetic aperture sonar imagery. In: Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXIII, Vol. 10628, p. 106280Z. International Society for Optics and Photonics (2018)

  68. Hu, H., Zhao, L., Huang, B., Li, X., Wang, H., Liu, T.: Enhancing visibility of polarimetric underwater image by transmittance correction. IEEE Photon. J. 9(3), 1–10 (2017). https://doi.org/10.1109/JPHOT.2017.2698000

    Article  Google Scholar 

  69. Khosravi, M.R.: The shortfalls of underwater sensor network simulators. Ses Technnol 60(5), 41 (2019)

    Google Scholar 

  70. Wang, N., Zheng, H., Zheng, B.: Underwater Image Restoration via Maximum Attenuation Identification. IEEE Access 5, 18941–18952 (2017)

    Article  Google Scholar 

  71. Wang, Y., Liu, H., Chau, L.P.: Single underwater image restoration using adaptive attenuation-curve prior. IEEE Trans. Circ. Syst. I Regul. Pap. 65(3), 992–1002 (2018)

    Article  Google Scholar 

  72. Peng, Y.T., Cosman, P.C.: Underwater image restoration based on image blurriness and light absorption. IEEE Trans. Image Process. 26(4), 1579–1594 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  73. Hu, H., Zhao, L., Li, X., Wang, H., Liu, T.: Underwater image recovery under the non-uniform optical field based on polarimetric imaging. IEEE Photon. J. (2018). https://doi.org/10.1109/JPHOT.2018.2791517

    Article  Google Scholar 

  74. Li, J., Skinner, K.A., Eustice, R.M., Johnson-Roberson, M.: WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robot. Autom. Lett. 3(1), 387–394 (2018). https://doi.org/10.1109/LRA.2017.2730363

    Article  Google Scholar 

  75. Moghimi, M.K., Mohanna, F.: Real-time underwater image resolution enhancement using super-resolution with deep convolutional neural networks. J Real-Time Image Proc (2020). https://doi.org/10.1007/s11554-020-01024-4

    Article  Google Scholar 

  76. Mercado, M.A., Ishii, K., Ahn, J.: Deep-sea image enhancement using multi-scale retinex with reverse color loss for autonomous underwater vehicles. In: OCEANS-Anchorage, 2017, pp. 1–6. IEEE (2017)

  77. Khosravi, M.R., Basri, H., Rostami, H.: Efficient routing for dense UWSNs with high-speed mobile nodes using spherical divisions. J. Supercomput. 74(2), 696–716 (2018)

    Article  Google Scholar 

  78. Ghani, A.S.A., Nasir, A.F.A., Tarmizi, W.F.W.: Integration of enhanced background filtering and wavelet fusion for high visibility and detection rate of deep sea underwater image of underwater vehicle. In: Information and Communication Technology (ICoIC7), 2017 5th International Conference on, pp. 1–6. IEEE (2017)

  79. Moghimi, M.K., Mohanna, F.: A joint adaptive evolutionary model towards optical image contrast enhancement and geometrical reconstruction approach in underwater remote sensing. SN Appl. Sci. 1(10), 1242 (2019). https://doi.org/10.1007/s42452-019-1255-0

    Article  Google Scholar 

  80. Chen, Z., Zhang, Z., Dai, F., Bu, Y., Wang, H.: Monocular vision-based underwater object detection. Sensors 17(8), 1784 (2017)

    Article  Google Scholar 

  81. Wang, N., Zheng, B., Zheng, H., Yu, Z.: Feeble object detection of underwater images through LSR with delay loop. Opt. Express 25(19), 22490–22498 (2017)

    Article  Google Scholar 

  82. Lu, H., Serikawa, S.: Underwater scene enhancement using weighted guided median filter. In: 2014 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2014)

  83. Yang, M., Sowmya, A.: An underwater color image quality evaluation metric. IEEE Trans. Image Process. 24(12), 6062–6071 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  84. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  85. Arredondo, M., Lebart, K.: A methodology for the systematic assessment of underwater video processing algorithms. In: Oceans 2005-Europe, Vol. 1, pp. 362–367. IEEE (2005)

  86. Fandos, R., Zoubir, A.M.: Optimal feature set for automatic detection and classification of underwater objects in SAS images. IEEE J. Sel. Top. Signal Process. 5(3), 454–468 (2011)

    Article  Google Scholar 

  87. Lee, E.A.: Cyber physical systems: Design challenges. In 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC), pp. 363–369. IEEE (2008)

  88. Li, C., Anwar, S., Porikli, F.: Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recogn. 98, 107038 (2020)

    Article  Google Scholar 

  89. Yang, M., Hu, K., Du, Y., Wei, Z., Sheng, Z., Hu, J.: Underwater image enhancement based on conditional generative adversarial network. Signal Process. Image Commun. 81, 115723 (2020)

    Article  Google Scholar 

  90. Jay, S., Guillaume, M., Blanc-Talon, J.: Underwater target detection with hyperspectral data: solutions for both known and unknown water quality. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 5(4), 1213–1221 (2012)

    Article  Google Scholar 

  91. Chuang, M.C., Hwang, J.N., Williams, K.: A feature learning and object recognition framework for underwater fish images. IEEE Trans. Image Process. 25(4), 1862–1872 (2016)

    MathSciNet  MATH  Google Scholar 

  92. Chikkerur, S., Sundaram, V., Reisslein, M., Karam, L.J.: Objective video quality assessment methods: a classification, review, and performance comparison. IEEE Trans. Broadcast. 57(2), 165 (2011)

    Article  Google Scholar 

  93. Boudhane, M., Nsiri, B.: Underwater image processing method for fish localization and detection in submarine environment. J. Vis. Commun. Image Represent. 39, 226–238 (2016)

    Article  Google Scholar 

  94. Li, C.Y., Guo, J.C., Cong, R.M., Pang, Y.W., Wang, B.: Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans. Image Process. 25(12), 5664–5677 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  95. Liu, X., Zhong, G., Liu, C., Dong, J.: Underwater image colour constancy based on DSNMF. IET Image Proc. 11(1), 38–43 (2017). https://doi.org/10.1049/iet-ipr.2016.0543

    Article  Google Scholar 

  96. Ghani, A.S.A., Aris, R.S.N.A.R., Zain, M.L.M.: Unsupervised contrast correction for underwater image quality enhancement through integrated-intensity stretched-Rayleigh histograms. J. Telecommun. Electron. Comput. Eng. (JTEC), 8(3), 1–7. http://journal.utem.edu.my/index.php/jtec/article/view/993 (2016)

  97. Yemelyanov, K.M., Lin, S.S., Pugh, E.N., Jr., Engheta, N.: Adaptive algorithms for two-channel polarization sensing under various polarization statistics with nonuniform distributions. Appl. Opt. 45(22), 5504–5520 (2006)

    Article  Google Scholar 

  98. Huang, B., Liu, T., Hu, H., Han, J., Yu, M.: Underwater image recovery considering polarization effects of objects. Opt. Express 24(9), 9826–9838 (2016)

    Article  Google Scholar 

  99. Tan, C.S., Sluzek, A., GL, G.S., & Jiang, T.Y.: Range gated imaging system for underwater robotic vehicle. In OCEANS 2006-Asia Pacific, pp. 1–6. IEEE (2007)

  100. Tan, C., Seet, G., Sluzek, A., He, D.: A novel application of range-gated underwater laser imaging system (ULIS) in near-target turbid medium. Opt. Lasers Eng. 43(9), 995–1009 (2005)

    Article  Google Scholar 

  101. Fattal, R.: Single image dehazing. ACM Trans. Graph. SESSION: Deblurring and dehazing. Association for Computing Machinery. (TOG) 27(3), 1–9 (2008). https://doi.org/10.1145/1360612.1360671

  102. Fattal, R.: Dehazing using color-lines. ACM Trans. Graph. (TOG) 34(1), 1–13 (2014)

    Article  Google Scholar 

  103. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  104. Ancuti, C.O., Ancuti, C.: Single image dehazing by multi-scale fusion. IEEE Trans. Image Process. 22(8), 3271–3282 (2013)

    Article  Google Scholar 

  105. Chiang, J.Y., Ying-Ching Chen, A.: Underwater image enhancement by wavelength compensation and dehazing (WCID). IEEE Trans. Image Process. 21(4), 1756–1769 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  106. Lu, H., Li, Y., Zhang, L., Serikawa, S.: Contrast enhancement for images in turbid water. JOSA A 32(5), 886–893 (2015). https://doi.org/10.1364/JOSAA.32.000886

    Article  Google Scholar 

  107. Garcia, R., Nicosevici, T., Cufí, X.: On the way to solve lighting problems in underwater imaging. In OCEANS'02 MTS/IEEE, Vol. 2, pp. 1018–1024. IEEE (2002)

  108. Fu, X., Cao, X.: Underwater image enhancement with global-local networks and compressed-histogram equalization. Signal Process. Image Commun., 115892 (2020)

  109. Bekaert, P., Haber, T., Ancuti, C.O., Ancuti, C.: Enhancing underwater images and videos by fusion. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 81–88. IEEE (2012)

  110. Gibson, K.B.: Preliminary results in using a joint contrast enhancement and turbulence mitigation method for underwater optical imaging. In: OCEANS'15 MTS/IEEE Washington (pp. 1–5). IEEE (2015)

  111. Arnold-Bos, A., Malkasse, J.P., & Kervern, G.: A preprocessing framework for automatic underwater images denoising. In: European Conference on Propagation and Systems (2005)

  112. Rizzi, A., Gatta, C., Marini, D.: A new algorithm for unsupervised global and local color correction. Pattern Recogn. Lett. 24(11), 1663–1677 (2003)

    Article  Google Scholar 

  113. Lu, H., Li, Y., Serikawa, S.: Single underwater image descattering and color correction. In: Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on (pp. 1623–1627). IEEE (2015)

  114. Liang, Z., Wang, Y., Ding, X., Mi, Z., Fu, X.: Single underwater image enhancement by attenuation map guided color correction and detail preserved dehazing. Neurocomputing 86, 115892 (2020)

    Google Scholar 

  115. Li, Y., Lu, H., Li, J., Li, X., Li, Y., Serikawa, S.: Underwater image de-scattering and classification by deep neural network. Comput. Electr. Eng. 54, 68–77 (2016)

    Article  Google Scholar 

  116. Schmid, M.S., Aubry, C., Grigor, J., Fortier, L.: The LOKI underwater imaging system and an automatic identification model for the detection of zooplankton taxa in the Arctic Ocean. Methods Oceanogr. 15–16, 129–160 (2016). https://doi.org/10.1016/j.mio.2016.03.003

    Article  Google Scholar 

  117. Mahmood, A., Bennamoun, M., An, S., Sohel, F., Boussaid, F., Hovey, R. Fisher, R.B.: Deep learning for coral classification. In: Handbook of Neural Computation (pp. 383–401) (2016)

  118. Qing, X., Nie, D., Qiao, G., Tang, J.: Classification for underwater small targets with different materials using bio-inspired Dolphin click. In: Ocean Acoustics (COA), 2016 IEEE/OES China, pp. 1–6. IEEE (2016)

  119. Faillettaz, R., Picheral, M., Luo, J.Y., Guigand, C., Cowen, R.K., Irisson, J.O.: Imperfect automatic image classification successfully describes plankton distribution patterns. Methods Oceanogr. 15–16, 60–77 (2016). https://doi.org/10.1016/j.mio.2016.04.003

    Article  Google Scholar 

  120. Mobley, C.D.: Light and Water: radiative Transfer in Natural Waters. Academic Press, Cambridge (1994)

    Google Scholar 

  121. Schettini, R., Corchs, S.: Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP J. Adv. Signal Process. 1, 1–14 (2010). https://doi.org/10.1155/2010/746052

    Article  Google Scholar 

  122. Hou, W.W.: A simple underwater imaging model. Opt. Lett. 34(17), 2688–2690 (2009)

    Article  Google Scholar 

  123. Yang, M., Hu, J., Li, C., Rohde, G., Du, Y., Hu, K.: An in-depth survey of underwater image enhancement and restoration. IEEE Access 7, 123638–123657 (2019). https://doi.org/10.1109/ACCESS.2019.2932611

    Article  Google Scholar 

  124. Anwar, S., Li, C.: Diving deeper into underwater image enhancement: A survey. 2019. arXiv 1907.07863

  125. Murez, Z., Treibitz, T., Ramamoorthi, R., & Kriegman, D.: Photometric stereo in a scattering medium. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3415–3423. (2015)

  126. Åhlén, J., Sundgren, D., Bengtsson, E.: Application of underwater hyperspectral data for color correction purposes. Pattern Recogn. Image Anal. 17(1), 170–173 (2007)

    Article  Google Scholar 

  127. Chambah, M., Semani, D., Renouf, A., Courtellemont, P., Rizzi A.: Underwater color constancy: enhancement of automatic live fish recognition In: Proceedings Volume and SPIE 5293, Color Imaging IX: Processing Hardcopy and Applications, pp 157–169 (2003). https://doi.org/10.1117/12.524540

  128. Lu, H., Li, Y., Xu, X., He, L., Li, Y., Dansereau, D., Serikawa, S.: Underwater image descattering and quality assessment. In: Image Processing (ICIP), 2016 IEEE International Conference on (pp. 1998–2002). IEEE (2016)

  129. Hou, W., & Weidemann, A.D.: Objectively assessing underwater image quality for the purpose of automated restoration. In: Visual Information Processing XVI, Vol. 6575, p. 65750Q. International Society for Optics and Photonics (2007)

  130. Hollinger, G.A., Mitra, U., & Sukhatme, G.S.: Active classification: theory and application to underwater inspection. In: Robotics Research, pp. 95–110. Springer, Cham (2017)

  131. Kumar, N., Mitra, U., Narayanan, S.S.: Robust object classification in underwater sidescan sonar images by using reliability-aware fusion of shadow features. IEEE J. Ocean. Eng. 40(3), 592–606 (2015)

    Article  Google Scholar 

  132. Yu, X., Wei, Y., Zhu, M., & Zhou, Z.: Automated classification of zooplankton for a towed imaging system. In: OCEANS 2016-Shanghai, pp. 1–4. IEEE (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farahnaz Mohanna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghimi, M.K., Mohanna, F. Real-time underwater image enhancement: a systematic review. J Real-Time Image Proc 18, 1509–1525 (2021). https://doi.org/10.1007/s11554-020-01052-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-020-01052-0

Keywords

Navigation