Skip to main content
Log in

Stochastic S-system modeling of gene regulatory network

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Microarray gene expression data can provide insights into biological processes at a system-wide level and is commonly used for reverse engineering gene regulatory networks (GRN). Due to the amalgamation of noise from different sources, microarray expression profiles become inherently noisy leading to significant impact on the GRN reconstruction process. Microarray replicates (both biological and technical), generated to increase the reliability of data obtained under noisy conditions, have limited influence in enhancing the accuracy of reconstruction . Therefore, instead of the conventional GRN modeling approaches which are deterministic, stochastic techniques are becoming increasingly necessary for inferring GRN from noisy microarray data. In this paper, we propose a new stochastic GRN model by investigating incorporation of various standard noise measurements in the deterministic S-system model. Experimental evaluations performed for varying sizes of synthetic network, representing different stochastic processes, demonstrate the effect of noise on the accuracy of genetic network modeling and the significance of stochastic modeling for GRN reconstruction . The proposed stochastic model is subsequently applied to infer the regulations among genes in two real life networks: (1) the well-studied IRMA network, a real-life in-vivo synthetic network constructed within the Saccharomyces cerevisiae yeast, and (2) the SOS DNA repair network in Escherichia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Arkin A, Ross J, McAdams HH (1998) Stochastic kinetic analysis of developmental pathway bifurcation in phage \(\lambda\)-infected Escherichia coli cells. Genetics 149(4):1633–1648

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bennett DC (1983) Differentiation in mouse melanoma cells: initial reversibility and an on-off stochastic model. Cell 34(2):445–453

    Article  CAS  PubMed  Google Scholar 

  • Cantone I, Marucci L, Iorio F, Ricci MA, Belcastro V, Bansal M, Santini S, di Bernardo M, di Bernardo D, Cosma MP (2009) A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137:172–181

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury AR, Chetty M (2011) An improved method to infer gene regulatory network using S-system. In IEEE congress on evolutionary computation, pp 1012–1019

  • Chowdhury AR, Chetty M, Vinh NX (2012) Adaptive regulatory genes cardinality for reconstructing genetic networks. In IEEE congress on evolutionary computation, pp 1–8

  • Chowdhury AR, Chetty M, Vinh NX (2013) Evaluating the influence of mirna in gene network reconstruction. J Cogn Neurodyn 1:251–259. doi:10.1007/s11571-013-9265-x

    Google Scholar 

  • Chowdhury AR, Chetty M, Vinh NX (2013) Incorporating time-delays in S-system model for reverse engineering genetic networks. BMC Bioinform 14:196

    Article  Google Scholar 

  • Climescu-Haulica A, Quirk MD (2007) A stochastic differential equation model for transcriptional regulatory networks. BMC bioinform 8(Suppl 5):S4

    Article  Google Scholar 

  • de Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9(1):67–103

    Article  PubMed  Google Scholar 

  • El Samad H, Khammash M, Petzold L, Gillespie D (2005) Stochastic modelling of gene regulatory networks. Int J Robust Nonlinear Control 15(15):691–711

    Article  Google Scholar 

  • Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35–55

    Article  CAS  PubMed  Google Scholar 

  • Gillespie DT, Petzold LR (2003) Improved leap-size selection for accelerated stochastic simulation. J Chem Phys 119(16):8229–8234

    Article  CAS  Google Scholar 

  • Goldbeter A (1995) A model for circadian oscillations in the Drosophila period protein (per). Proc R Soc Lond B Biol Sci 261(1362):319–324

    Article  CAS  Google Scholar 

  • Golding I, Paulsson J, Zawilski SM, Cox EC (2005) Real-time kinetics of gene activity in individual bacteria. Cell 123(6):1025–1036

    Article  CAS  PubMed  Google Scholar 

  • Gonze D, Halloy J, Goldbeter A (2002) Robustness of circadian rhythms with respect to molecular noise. Proc Natl Acad Sci 99(2):673–678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goss PJ, Peccoud J (1998) Quantitative modeling of stochastic systems in molecular biology by using stochastic petri nets. Proc Natl Acad Sci 95(12):6750–6755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He W, Cao J (2008) Robust stability of genetic regulatory networks with distributed delay. Cogn Neurodyn 2(4):355–361

    Article  PubMed Central  PubMed  Google Scholar 

  • Kikuchi S, Tominaga D, Arita M, Takahashi K, Tomita M (2003) Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics 19(5):643–650

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kim J, Cho K-H (2007) Inferring gene regulatory networks from temporal expression profiles under time-delay and noise. Comput Biol Chem 31(4):239–245

    Article  CAS  PubMed  Google Scholar 

  • Luo Q, Zhang R, Liao X (2010) Unconditional global exponential stability in lagrange sense of genetic regulatory networks with sum regulatory logic. Cogn Neurodyn 4(3):251–261

    Article  PubMed Central  PubMed  Google Scholar 

  • Maki Y, Ueda T, Okamoto M, Uematsu N, Inamura K, Uchida K, Takahashi Y, Eguchi Y (2002) Inference of genetic network using the expression profile time course data of mouse p19 cells. Genome Inform 13:382–383

    CAS  Google Scholar 

  • Noman N (2007) A memetic algorithm for reconstructing gene regulatory networks from expression profile. PhD thesis, Graduate School of Frontier Sciences at the University of Tokyo

  • Perrin B-E, Ralaivola L, Mazurie A, Bottani S, Mallet J, dAlchBuc F (2003) Gene networks inference using dynamic Bayesian networks. Bioinformatics 19(suppl 2):ii138–ii148

    Article  PubMed  Google Scholar 

  • Poovathingal SK, Gunawan R (2010) Global parameter estimation methods for stochastic biochemical systems. BMC Bioinform 11(1):414

    Article  Google Scholar 

  • Rocke DM, Durbin B (2001) A model for measurement error for gene expression arrays. J Comput Biol 8(6):557–569

    Article  CAS  PubMed  Google Scholar 

  • Ronen M, Rosenberg R, Shraiman BI, Alon U (2002) Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Natl Acad Sci 99(16):10555–10560

    Article  CAS  Google Scholar 

  • Savageau M (1976) Biochemical systems analysis. A study of function and design in molecular biology. Addison-Wesley Publishing Company, Massachusetts

    Google Scholar 

  • Shmulevich I, Aitchison JD (2009) Deterministic and stochastic models of genetic regulatory networks. Methods Enzymol 467:335–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shmulevich I, Dougherty ER, Kim S, Zhang W (2002) Probabilistic boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2):261–274

    Article  CAS  PubMed  Google Scholar 

  • Tian T (2010) Stochastic models for inferring genetic regulation from microarray gene expression data. Biosystems 99(3):192–200

    Article  CAS  PubMed  Google Scholar 

  • Tian T (2011) Stochastic modeling of gene regulatory networks, chapter 2. Wiley-VCH Verlag GmbH & Co, KGaA, pp 13–37

  • Tian T, Burrage K (2001) Implicit taylor methods for stiff stochastic differential equations. Appl Numer Math 38(1):167–185

    Article  Google Scholar 

  • Tian T, Burrage K (2006) Stochastic models for regulatory networks of the genetic toggle switch. Proc Natl Acad Sci 103(22):8372–8377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tu Y, Stolovitzky G, Klein U (2002) Quantitative noise analysis for gene expression microarray experiments. Proc Natl Acad Sci 99(22):14031–14036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Voit EO, Radivoyevitch T (2000) Biochemical systems analysis of genome-wide expression data. Bioinformatics 16:1023–1037

    Article  CAS  PubMed  Google Scholar 

  • Wahde M, Hertz J (2000) Coarse-grained reverse engineering of genetic regulatory networks. Biosystems 55(1):129–136

    Article  CAS  PubMed  Google Scholar 

  • Walleczek J (2000) Self-organized biological dynamics and nonlinear control: toward understanding complexity, chaos, and emergent function in living systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Walters MC, Fiering S, Eidemiller J, Magis W, Groudine M, Martin D (1995) Enhancers increase the probability but not the level of gene expression. Proc Natl Acad Sci 92(15):7125–7129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Z, Liu G, Sun Y, Wu H (2009) Robust stability of stochastic delayed genetic regulatory networks. Cogn Neurodyn 3(3):271–280

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilkinson DJ (2009) Stochastic modelling for quantitative description of heterogeneous biological systems. Nat Rev Genet 10(2):122–133

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been funded by Collaborative Research Network (CRN) project of Federation University Australia. Authors would like to acknowledge Dr. Andrew Percy from Federation University Australia (Gippsland campus) for his useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahsan Raja Chowdhury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, A.R., Chetty, M. & Evans, R. Stochastic S-system modeling of gene regulatory network. Cogn Neurodyn 9, 535–547 (2015). https://doi.org/10.1007/s11571-015-9346-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-015-9346-0

Keywords

Navigation