Skip to main content
Log in

Combination of Fe-Mn based Li-rich cathode materials and conducting-polymer polypyrrole nanowires with high rate capability

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The polypyrrole (PPy) nanowires are conducting 1D materials, which can significantly improve the electrical conductivity of the composites. A novel Li1.26Fe0.22Mn0.52O2 (LFMO) @ PPy nanowire composites were synthesized by simply ultrasonic dispersing LFMO and PPy nanowires in aqueous ethanol. The structure and morphology of pristine LFMO and LFMO@PPy are investigated by XRD, SEM, and TEM. The elemental mapping and FTIR results demonstrate the conductive network of PPy nanowires exists in the composites and the LFMO particles uniformly distribute on the PPy nanowires. LFMO combined with PPy nanowires exhibits better rate capability, higher capacity, coulombic efficiency, and cycleability than the pristine. The rate performance of composites with 10 wt% PPy nanowires shows the discharge capacities of 132.2 mAh/g and 98 mAh/g at 1C and 3C rate after 50 cycles, respectively. Electrochemical impedance spectroscopy test suggests that the conductive PPy nanowires can significantly decrease the charge-transfer resistance of LFMO. The composite with 10 wt% PPy nanowires shows a discharge capacity retention of 71% after 50 cycles at 1C, while the pristine sample only has 50% capacity retention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Johnson CS, Li N, Lefief C, Thackeray MM (2007) Anomalous capacity and cycling stability of xLi2MnO3 · (1 − x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50 °C. Electrochem Commun 9:787–795

    Article  CAS  Google Scholar 

  2. Koenig GM, Belharouak I, Deng H, Sun Y, Amine K (2011) Composition-tailored synthesis of gradient transition metal precursor particles for lithium-ion battery cathode materials. Chem Mater 23:1954–1963

    Article  CAS  Google Scholar 

  3. Tabuchi M, Nabeshima Y, Takeuchi T, Tatsumi K, Imaizumi J, Nitta Y (2010) Fe content effects on electrochemical properties of Fe-substituted Li2MnO3 positive electrode material. J Power Sources 195:834–844

    Article  CAS  Google Scholar 

  4. Tabuchi M, Shigemura H, Ado K, Kobayashi H, Sakaebe H, Kageyama H, Kanno R (2001) Preparation of lithium manganese oxides containing iron. J Power Sources 97–98:415–419

    Article  Google Scholar 

  5. Tabuchi M, Nakashima A, Shigemura H, Ado K, Kobayashi H, Sakaebe H, Kageyama H, Nakamura T, Kohzaki M, Hirano A, Kanno R (2002) Synthesis, cation distribution, and electrochemical properties of Fe-substituted Li2MnO3 as a novel 4 V positive electrode material. J Electrochem Soc 149:A509–A524

    Article  CAS  Google Scholar 

  6. Tabuchi M, Nabeshima Y, Ado K, Shikano M, Kageyama H, Tatsumi K (2007) Material design concept for Fe-substituted Li2MnO3-based positive electrodes. J Power Sources 174:554–559

    Article  CAS  Google Scholar 

  7. Wu Y, Vadivel Murugan A, Manthiram A (2008) Surface modification of high capacity layered Li [ Li0.2Mn0.54Ni0.13Co0.13 ] O2 cathodes by AlPO4. J Electrochem Soc 155:A635–A641

    Article  CAS  Google Scholar 

  8. Zhao Y, Sun G, Wu R (2013) Synthesis of nanosized Fe-Mn based Li-rich cathode materials for lithium-ion battery via a simple method. Electrochim Acta 96:291–297

    Article  CAS  Google Scholar 

  9. Wu F, Zhang X, Zhao T, Li L, Xie M, Chen R (2015) Multifunctional AlPO4 coating for improving electrochemical properties of low-cost li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries. Acs Appl Mater Inter 7:3773–3781

    Article  CAS  Google Scholar 

  10. Zhao Y, Wang Y, Ji C, Zhao Z, Lv Z (2016) Electrochemistry and structure of Li-rich cathode composites: Li1.26Fe0.22Mn0.52O2 in situ integrated with conductive network-graphene oxide for lithium-ion batteries. RSC Adv 6:31762–31768

    Article  CAS  Google Scholar 

  11. Liu J, Wang Q, Reeja-Jayan B, Manthiram A (2010) Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. Electrochem Commun 12:750–753

    Article  CAS  Google Scholar 

  12. Zhao Y, Sun Y, Yue Y, Hu X, Xia M (2014) Carbon modified Li-rich cathode materials Li1.26Fe0.22Mn0.52O2 synthesized via molten salt method with excellent rate ability for Li-ion batteries. Electrochim Acta 130:66–75

    Article  CAS  Google Scholar 

  13. Zhang P, Zhang L, Ren X, Yuan Q, Liu J, Zhang Q (2011) Preparation and electrochemical properties of LiNi1/3Co1/3Mn1/3O2–PPy composites cathode materials for lithium-ion battery. Synth Met 161:1092–1097

    Article  CAS  Google Scholar 

  14. Cao J, Hu G, Peng Z, Du K, Cao Y (2015) Polypyrrole-coated LiCoO2 nanocomposite with enhanced electrochemical properties at high voltage for lithium-ion batteries. J Power Sources 281:49–55

    Article  CAS  Google Scholar 

  15. Fedorková A, Nacher-Alejos A, Gómez-Romero P, Oriňáková R, Kaniansky D (2010) Structural and electrochemical studies of PPy/PEG-LiFePO4 cathode material for Li-ion batteries. Electrochim Acta 55:943–947

    Article  Google Scholar 

  16. Fedorková A, Oriňáková R, Oriňák A, Wiemhöfer H, Kaniansky D, Winter M (2010) Surface treatment of LiFePO4 cathode material with PPy/PEG conductive layer. J Solid State Electrochem 14:2173–2178

    Article  Google Scholar 

  17. Chew SY, Feng C, Ng SH, Wang J, Guo Z, Liu H (2007) Low-temperature synthesis of Polypyrrole-coated LiV3O8 composite with enhanced electrochemical properties. J Electrochem Soc 154:A633–A637

    Article  CAS  Google Scholar 

  18. Cui L, Shen J, Cheng F, Tao Z, Chen J (2011) SnO2 nanoparticles@polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries. J Power Sources 196:2195–2201

    Article  CAS  Google Scholar 

  19. Qie L, Chen W, Wang Z, Shao Q, Li X, Yuan L, Hu X, Zhang W, Huang Y (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24:2047–2050

    Article  Google Scholar 

  20. Mi H, Xu Y, Shi W, Yoo H, Park S, Park Y, Oh SM (2011) Polymer-derived carbon nanofiber network supported SnO2 nanocrystals: a superior lithium secondary battery material. J Mater Chem 21:19302–19309

    Article  CAS  Google Scholar 

  21. Armstrong AR, Holzapfel M, Novák P, Johnson CS, Kang S, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated Structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J am Chem Soc 128:8694–8698

    Article  CAS  Google Scholar 

  22. Yu DYW, Yanagida K (2011) Structural analysis of Li2MnO3 and related Li-Mn-O materials. J Electrochem Soc 158:A1015–A1022

    Article  CAS  Google Scholar 

  23. Kim J, Jeong I, Moon S, Gu H (2001) Electrochemical characteristics of LiMn2O4-polypyrrole composite cathode for lithium polymer batteries. J Power Sources 97–98:450–453

    Article  Google Scholar 

  24. Kuwabata S, Masui S, Yoneyama H (1999) Charge–discharge properties of composites of LiMn2O4 and polypyrrole as positive electrode materials for 4 V class of rechargeable Li batteries. Electrochim Acta 44:4593–4600

    Article  CAS  Google Scholar 

  25. Yu DYW, Yanagida K, Nakamura H (2010) Surface modification of Li-excess Mn-based cathode materials. J Electrochem Soc 157:A1177–A1182

    Article  CAS  Google Scholar 

  26. Zheng J, Deng S, Shi Z, Xu H, Xu H, Deng Y, Zhang Z, Chen G (2013) The effects of persulfate treatment on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material. J Power Sources 221:108–113

    Article  CAS  Google Scholar 

  27. Liu H, Du C, Yin G, Song B, Zuo P, Cheng X, Ma Y, Gao Y (2014) An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries. J Mater Chem a 2:15640–15646

    Article  CAS  Google Scholar 

  28. Liu J, Manthiram A (2010) Functional surface modifications of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode. J Mater Chem 20:3961–3967

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the “Natural Science Foundation of China”, No. 21301013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujuan Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Lv, Z., Wang, Y. et al. Combination of Fe-Mn based Li-rich cathode materials and conducting-polymer polypyrrole nanowires with high rate capability. Ionics 24, 51–60 (2018). https://doi.org/10.1007/s11581-017-2166-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2166-y

Keywords

Navigation