Skip to main content
Log in

Effect of binders on performance of Si/C composite as anode for Li-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Si/C composite was prepared by ball milling and subsequent pyrolysis process using nanosilicon, flake graphite, and phenolic resin as raw materials. The effect of different binders on the performance of Si/C composite was investigated. XRD and FT-IR were used to characterize the structure of the binders, and SEM was used to characterize the morphology of the electrodes. The electrochemical results showed that LA133 had the best performance; the initial charge capacity was 660.4 mAh g−1, with a capacity retention of 92.9% after 50 cycles. Compared with PVDF and sodium alginate, better cycling performance was obtained using LA133 as binder of Si/C composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rahman MA, Song G, Bhatt AI, Wong YC, Wen C (2016) Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv Funct Mater 26:647–678

    Article  CAS  Google Scholar 

  2. Fang Y, Chen Z, Xiao L, Ai, X., Cao, Y., & Yang, H. (2018) Energy storage: recent progress in iron-based electrode materials for grid-scale sodium-ion batteries. Small 9

  3. Wu FX, Oleg B, Gleb YS (2017) In situ surface protection for enhancing stability and performance of conversion–type cathodes. MRS Energy Sustain: A Rev J 4:1–15

    Article  Google Scholar 

  4. David L, Bhandavat R, Barrera U, Singh G (2016) Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries. Nat Commun 7

  5. Nitta N, Wu FX, Lee JT, Gleb YS (2015) Li–ion battery materials: present and future. Mater Today 18:252–264

    Article  CAS  Google Scholar 

  6. Park SW, Kim JC, Dar MA, Shim HW, Kim DW (2017) Enhanced cycle stability of silicon coated with waste poly (vinyl butyral)-directed carbon for lithium-ion battery anodes. J Alloys Compd 698:525–531

    Article  CAS  Google Scholar 

  7. Ma H, Cheng F, Chen J –, Zhao, J. -., Li, C. -., & Tao, Z. -., et al. (2010) Nest-like silicon nanospheres for high–capacity lithium storage. Adv Mater 22: 4067–4070

  8. Kim H, Han B, Prof JC, Prof JC (2008) Three–dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew Chem 47(52):10151–10154

    Article  CAS  Google Scholar 

  9. Wu FX, Gleb YS (2017) Conversion cathodes for rechargeable lithium and lithium–ion batteries. Energy Environ Sci 10:435–459

    Article  CAS  Google Scholar 

  10. Liu Z, Guo P, Liu B, Xie W, Liu D, He D (2017) Carbon-coated Si nanoparticles/reduced graphene oxide multilayer anchored to nanostructured current collector as lithium-ion battery anode. Appl Surf Sci 396:41–47

    Article  CAS  Google Scholar 

  11. Wang C, Luo F, Lu H, Rong X, Liu B, Chu G et al (2017) A well-defined silicon nanocone-carbon structure for demonstrating exclusive influences of carbon coating on silicon anode of lithium-ion batteries. ACS Appl Mater Interfaces 9(3)

  12. Higgins TM, Park SH, King PJ, Zhang C, Mcevoy N, Berner NC et al (2016) A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 10(3):3702–3713

    Article  CAS  Google Scholar 

  13. Xie J, Wang G, Huo Y, Zhang S, Cao G, Zhao X (2014) Nanostructured silicon spheres prepared by a controllable magnesiothermic reduction as anode for lithium ion batteries. Electrochim Acta 22:94–100

    Article  Google Scholar 

  14. Chan CK, Peng H, Liu G, Mcilwrath K, Zhang XF, Huggins RA et al (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol (1):187–191

  15. Ashuri M, He Q, Shaw LL (2015) Silicon as a potential anode material for li-ion batteries: where size, geometry and structure matter. Nanoscale 1:74–103

    Google Scholar 

  16. Lee JG, Kim J, Lee JB, Park H, Kim HS, Ji HR et al (2017) Mechanical damage of surface films and failure of nano-sized silicon electrodes in lithium ion batteries. J Electrochem Soc 164(1):A6103–A6109

    Article  CAS  Google Scholar 

  17. Jiménez AR, Klöpsch R, Wagner R, Rodehorst UC, Kolek M, Nölle R et al (2017) A step toward high-energy silicon-based thin film lithium ion batteries. ACS Nano 11(5):4731–4744

    Article  Google Scholar 

  18. Reyes AJ, Nölle R, Wagner R et al (2018) A step towards understanding the beneficial influence of a LIPON-based artificial SEI on silicon thin film anodes in lithium-ion batteries. Nanoscale 10(4):2128–2137

    Article  Google Scholar 

  19. Su H, Barragan AA, Geng L, Long D, Ling L, Bozhilov KN, Mangolini L, Guo J (2017) Colloidal synthesis of silicon-carbon composite material for lithium-ion batteries[J]. Angew Chem Int Ed 56(36):10780–10785

    Article  CAS  Google Scholar 

  20. Wu L, Shi S, X Zhang YY, J L ST, Zhong* S (2018) Room-temperature pre-reduction of spinning solution for the synthesis of Na3V2(PO4)3/C nanofibers as high-performance cathode materials for Na-ion batteries [J]. Electrochim Acta 274:233–241

    Article  CAS  Google Scholar 

  21. Biserni E, Xie M, Brescia R, Scarpellini A, Hashempour M, Movahed P, George SM, Bestetti M, Li Bassi A, Bruno P (2015) Silicon algae with carbon topping as thin-film anodes for lithium-ion microbatteries by a two-step facile method. J Power Sources 274:252–259

    Article  CAS  Google Scholar 

  22. Buqa H, Holzapfel M, Krumeich F, Veit C, Novák P (2006) Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. J Power Sources 161(1):617–622

    Article  CAS  Google Scholar 

  23. Choi S, Kwon TW, Coskun A, Choi JW (2017) Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357(6348):279–283

    Article  CAS  Google Scholar 

  24. Le AV, Wang M, Noelle DJ et al (2017) Effects of macromolecular configuration of thermally sensitive binder in lithium-ion battery. J Appl Polym Sci 134(31)

  25. Karkar Z, Guyomard D, Roué L, Lestriez B (2017) A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes. Electrochim Acta 258:453–466

    Article  CAS  Google Scholar 

  26. Wang RH, Li XH, Wang ZX, Zhang H (2017) Electrochemical analysis graphite/electrolyte interface in lithium–ion batteries: p–toluenesulfonyl isocyanate as electrolyte additive. Nano Energy 34:131–140

    Article  CAS  Google Scholar 

  27. Wang RH, Wang ZX, Li XH, Zhang H (2017) Electrochemical analysis the influence of propargyl methanesulfonate as electrolyte additive for spinel LTO interface layer. Electrochim Acta 241:208–219

    Article  CAS  Google Scholar 

  28. Wang RH, Li XH, Wang ZX, Guo HJ, He ZJ (2015) Electrochemical analysis for enhancing interface layer of spinel Li4Ti5O12: p–toluenesulfonyl isocyanate as electrolyte additive. ACS Appl Mater Interfaces 7:23605–23614

    Article  CAS  Google Scholar 

  29. Chen H, Wang Z, Hou X, Fu L, Wang S, Hu X, Qin H, Wu Y, Ru Q, Liu X, Hu S (2017) Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode. Electrochim Acta 249:113–121

    Article  CAS  Google Scholar 

  30. Jang E, Park HK, Lee CS (2016) Synthesis and application of Si/carbon nanofiber composites based on Ni and Mo catalysts for anode material of lithium secondary batteries. J Nanosci Nanotechnol 16(5):4792–4802

    Article  CAS  Google Scholar 

  31. Niemiec W, Szczygieł P, Jeleń P, & Handke, M. (2018) IR investigation on silicon oxycarbide structure obtained from precursors with 1:1 silicon to carbon atoms ratio and various carbon atoms distribution. Journal of Molecular Structure

  32. Cao PF, Naguib M, Du Z, Stacy EW, Li B, Hong T et al (2018) Effect of binder architecture on the performance of silicon/graphite composite anodes for lithium-ion batteries. ACS Appl Mater Interfaces 10(4):3470–3478

    Article  CAS  Google Scholar 

  33. Chen L, Xie X, Xie J, Wang K, Yang J (2006) Binder effect on cycling performance of silicon/carbon composite anodes for lithium ion batteries. J Appl Electrochem 36(10):1099–1104

    Article  CAS  Google Scholar 

  34. Wu L, Hu Y, Zhang X, Liu J, Zhu X, Zhong S (2018) Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries [J]. J Power Sources 374:40–47

    Article  CAS  Google Scholar 

  35. Janot R, Guérard D (2005) Ball-milling in liquid media: applications to the preparation of anodic materials for lithium-ion batteries. Prog Mater Sci 50(1):1–92

    Article  CAS  Google Scholar 

  36. Song J, Yu Z, Gordin ML, Li X, Peng H, Wang D (2015) Advanced sodium-ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube and crosslinked polymer binder. ACS Nano 12:11933–11941

    Article  Google Scholar 

  37. Roth EP, Doughty DH, Franklin J (2004) DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders[J]. J Power Sources 134(2):222–234

    Article  CAS  Google Scholar 

  38. Han P, Fan J, Jing M, Zhu L, Shen X, Pan T (2013) Effects of reduced graphene on crystallization behavior, thermal conductivity and tribological properties of poly (vinylidene fluoride) [J]. J Compos Mater (6):659–666

  39. Dhevi DM, Prabu AA, Kim KJ (2018) Infrared spectroscopic studies on crystalline phase transition of PVDF and PVDF/hyperbranched polyester blend ultrathin films. Vib Spectrosc 94:74–82

    Article  CAS  Google Scholar 

  40. Zhang S J, Deng Y P, Wu Q H, Zhou, Y., Li, J. T., & Wu, Z. Y., et al. (2017) Sodium alginate based binders for lithium-rich cathode materials of lithium-ion batteries to suppress voltage and capacity fading. Chemelectrochem

  41. Lu H, Li T, Wang J, Yi, D., & Lai, Y. (2017) Comparative study on different binders used for sulfur cathode of lithium sulfur battery. Chemistry 10

  42. Li M, Gu J, Feng X, He H, Zeng C (2015) Amorphous-silicon@silicon oxide/chromium/carbon as an anode for lithium-ion batteries with excellent cyclic stability. Electrochim Acta 164:163–170

    Article  CAS  Google Scholar 

  43. Yun Q, Qin X, Lv W, He YB, Li B, Kang F, Yang QH (2015) “Concrete” inspired construction of a silicon/carbon hybrid electrode for high performance lithium ion battery. Carbon 93:59–67

    Article  CAS  Google Scholar 

  44. Terranova ML, Orlanducci S, Tamburri E, Guglielmotti V, Rossi M (2014) Si/C hybrid nanostructures for li-ion anodes: an overview. J Power Sources 23:167–177

    Article  Google Scholar 

  45. Chai L, Qu Q, Zhang L, Shen M, Li Z, Zheng H (2013) Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries. Electrochim Acta 26:378–383

    Article  Google Scholar 

  46. Wu L, Zhou H, Yang J, Zhou X, Ren Y, Nie Y, Chen S (2017) Carbon coated mesoporous Si anode prepared by a partial magnesiothermic reduction for lithium-ion batteries [J]. J Alloys Compd 716:204–209

    Article  CAS  Google Scholar 

  47. Zhou R, Guo HJ, Yang Y, Wang ZX, Li XH, Zhou Y (2016) An alternative carbon source of silicon-based anode material for lithium ion batteries. Powder Technol 295:296–302

    Article  CAS  Google Scholar 

Download references

Funding

The project was sponsored by the National Natural Science Foundation of China (51604125, 51604124, and 51774150), the Natural Science Foundation of Jiangsu Province (BK20150506), and the Scientific Research foundation for senior talent of Jiangsu University (14JDG130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjian Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, M., Liu, S., Wan, H. et al. Effect of binders on performance of Si/C composite as anode for Li-ion batteries. Ionics 25, 2103–2109 (2019). https://doi.org/10.1007/s11581-018-2611-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2611-6

Keywords

Navigation