Skip to main content
Log in

Conducting polyaniline/poly (acrylic acid)/phytic acid multifunctional binders for Si anodes in lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The poor cycling stability is a tricky problem in the silicon-based lithium-ion batteries. Herein, we fabricate a three-dimension polyaniline/poly (acrylic acid)/phytic acid compound binder for the silicon anodes. In this binder, polyaniline-doped and gelated by phytic acid functions as a continuous electrically conductive network structure for the silicon anodes. Meanwhile, a high density of carboxyl groups provided by poly (acrylic acid) enhance the stability of the silicon electrodes by supplying strong binding ability with current collectors and silicon particles. Using this multifunctional binder in silicon anode, we succeed in manufacturing very long cycle life of larger than 1000 cycles at a current density of 4.2 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  2. Wolfart F, Hryniewicz BM, Góes MS, Corrêa CM, Torresi RM, Minadeo MAOS, Córdoba de Torresi SI, Oliveira RD, Marchesi LF, Vidotti M (2017) Conducting polymers revisited: applications in energy, electrochromism and molecular recognition. J Solid State Electrochem 21:2489–2515

    CAS  Google Scholar 

  3. Balducci A (2017) Top Curr Chem 375:1–27

    CAS  Google Scholar 

  4. Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard MH, Saraf LV, Nie Z, Exarhos GJ, Liu J (2012) A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater 24:1176–1181

    PubMed  CAS  Google Scholar 

  5. Cui LF, Ruffo R, Chan CK, Peng H, Cui Y (2009) Crystalline-amorphous core−shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett 9:491–595

    PubMed  CAS  Google Scholar 

  6. Maranchi JP, Hepp AF, Kumta PN (2003) High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem Solid-State Lett 6:A198

    CAS  Google Scholar 

  7. Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:1943

    PubMed  Google Scholar 

  8. Miao F, Miao R, Wu W, Cong W, Zang Y, Tao B (2018) A stable hybrid anode of graphene/silicon nanowires array for high performance lithium-ion battery. Mater Lett 228:262–265

    CAS  Google Scholar 

  9. Liu N, Lu Z, Zhao J, McDowell MT, Lee HW, Zhao W, Cui Y (2014) A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol 9:187–192

    PubMed  CAS  Google Scholar 

  10. Wang M, Wang W, Wang A, Yuan K, Miao L, Zhang X, Huang Y, Yu Z, Qiu J (2013) A multi-core-shell structured composite cathode material with a conductive polymer network for Li-S batteries. Chem Commun 49:10263–10265

    CAS  Google Scholar 

  11. Ning G, Haran B, Popov BN (2003) Capacity fade study of lithium-ion batteries cycled at high discharge rates. J Power Sources 117:160–169

    CAS  Google Scholar 

  12. Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat Nanotechnol 7:310–315

    PubMed  CAS  Google Scholar 

  13. Hwang TH, Lee YM, Kong BS, Seo JS, Choi JW (2012) Electrospun core–shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett 12:802–807

    PubMed  CAS  Google Scholar 

  14. Song T, Xia J, Lee JH, Lee DH, Kwon MS, Choi JM, Wu J, Doo SK, Chang H, Park WI, Zang DS, Kim H, Huang Y, Hwang KC, Rogers JA, Paik U (2010) Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett 10:1710–1716

    PubMed  CAS  Google Scholar 

  15. Guo J, Wang C (2010) A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery. Chem Commun 46:1428–1430

    CAS  Google Scholar 

  16. Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21:9938

    CAS  Google Scholar 

  17. Li J, Lewis RB, Dahn JR (2007) Sodium carboxymethyl cellulose. Electrochem Solid-State Lett 10:A17

    CAS  Google Scholar 

  18. Liu J, Zhang Q, Wu ZY, Wu JH, Li JT, Huang L, Sun SG (2014) A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery. Chem Commun 50:6386–6389

    CAS  Google Scholar 

  19. Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K (2011) Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries. J Phys Chem C 115:13487–13495

    CAS  Google Scholar 

  20. Chen L, Xie X, Xie J, Wang K, Yang J (2006) Binder effect on cycling performance of silicon/carbon composite anodes for lithium ion batteries. J Appl Electrochem 36:1099–1104

    CAS  Google Scholar 

  21. Mazouzi D, Karkar Z, Hernandez CR, Manero PJ, Guyomard D, Roué L, Lestriez B (2015) Critical roles of binders and formulation at multiscales of silicon-based composite electrodes. J Power Sources 280:533–549

    CAS  Google Scholar 

  22. Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Yushin G (2011) A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334:75–79

    PubMed  CAS  Google Scholar 

  23. Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner CF, Luzinov I, Yushin G (2010) Toward efficient binders for Li-ion battery si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces 2:3004–3010

    PubMed  CAS  Google Scholar 

  24. Liu T, Chu Q, Yan C, Zhang S, Lin Z, Lu J (2019) Interweaving 3D Network binder for high-areal-capacity Si anode through combined hard and soft polymers. Adv Energy Mater 9:1802645

    Google Scholar 

  25. Ling M, Qiu J, Li S, Yan C, Kiefel MJ, Liu G, Zhang S (2015) Multifunctional SA-PProDOT binder for lithium ion batteries. Nano Lett 15:4440–4447

    PubMed  CAS  Google Scholar 

  26. Chen H, Ling M, Hencz L, Ling HY, Li G, Lin Z, Zhang, S (2018) Chem Rev 118: 8936–8982, Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices

  27. Zheng T, Zhang T, de la Fuente MS, Liu G (2019) Aqueous emulsion of conductive polymer binders for Si anode materials in lithium ion batteries. Eur Polym J 114:265–270

    CAS  Google Scholar 

  28. Liu G, Xun S, Vukmirovic N, Song X, Olalde-Velasco P, Zheng H, Yang W (2011) Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv Mater 23:4679–4683

    PubMed  CAS  Google Scholar 

  29. Zeng W, Wang L, Peng X, Liu T, Jiang Y, Qin F, Zhou Y (2018) Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries. Adv Energy Mater 8:1702314

    Google Scholar 

  30. Wei LM, Hou ZY (2017) J Mater Chem A 5:22156–22162

    CAS  Google Scholar 

  31. Han ZJ, Yabuuchi N, Hashimoto S, Sasaki T, Komaba S (2012) ECS Electrochem Lett 2:A17–A20

    Google Scholar 

  32. Pan L, Yu G, Zhai D, Lee HR, Zhao W, Liu N, Wang H, Tee BC, Shi Y, Cui Y, Bao Z (2012) Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci U S A 109:9287–9292

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Sun L, Liu H, Clark R, Yang SC (1997) Double-strand polyaniline. Synthetic Met 84:67–68

    CAS  Google Scholar 

  34. Lee K, Lim S, Kim TH (2018) Dopamine-conjugated poly(acrylic acid) blended with an electrically conductive polyaniline binder for silicon anode. B Korean Chem Soc 39:873–878

    CAS  Google Scholar 

  35. Hu H, Saniger JM, Bañuelos JG (1999) Thin films of polyaniline–polyacrylic acid composite by chemical bath deposition. Thin Solid Films 347:241–247

    CAS  Google Scholar 

  36. Pan F, Yang X, Zhang D (2009) Chemical nature of phytic acid conversion coating on AZ61 magnesium alloy. Appl Surf Sci 255:8363–8371

    CAS  Google Scholar 

  37. Lu X, Yu Y, Chen L, Mao H, Wang L, Zhang W, Wei Y (2005) Poly(acrylic acid)-guided synthesis of helical polyaniline microwires. Polymer 46:5329–5333

    CAS  Google Scholar 

  38. Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G (2010) High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater 9:353–358

    PubMed  CAS  Google Scholar 

  39. Miao F, Li Q, Tao B, Chu PK (2014) Fabrication of highly ordered porous nickel oxide anode materials and their electrochemical characteristics in lithium storage. J Alloy Compd 594:65–69

    CAS  Google Scholar 

  40. Wang L, Gong H, Wang C, Wang D, Tang K, Qian Y (2012) Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity. Nanoscale 4:6850–6855

    PubMed  CAS  Google Scholar 

  41. Ko S, Lee JI, Yang HS, Park S, Jeong U (2012) Mesoporous CuO particles threaded with CNTs for high-performance lithium-ion battery anodes. Adv Mater 24:4451–4456

    PubMed  CAS  Google Scholar 

  42. Zhao CH, Shen Y, Hu ZB, Wang XX (2018) Int J Electrochem Sci 13:5184–5194

    CAS  Google Scholar 

  43. Guan X, Nai JW, Zhang YP, Wang PX, Guo L Chem Mater (2014) 26:5978–5964

  44. Zhang M, Uchaker E, Hu S, Gao GZ (2015) Nanoscale 5:12342–12347

    Google Scholar 

  45. Mazouzi D, Karkar Z, Reale Hernandez C, Jimenez Manero P, Guyomard D, Roué L (2015) Critical roles of binders and formulation at multiscales of silicon-based composite electrodes. J Power Sources 280:533–549

    CAS  Google Scholar 

  46. Guo J, Sun A, Chen X, Wang C, Manivannan A (2011) Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy. Electrochim Acta 56:3981–3987

    CAS  Google Scholar 

  47. Wei L, Hou Z, Wei H (2017) Porous sandwiched graphene/silicon anodes for lithium storage. Electrochim Acta 229:445–451

    CAS  Google Scholar 

Download references

Funding

We acknowledge the funding support from the National Natural Science Foundation of China (No.51272155) and the U-M/SJTU Collaborative Research Program in Nanostructured Multi-functional Li-Batteries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangming Wei.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 3360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, Y., Shi, Y. et al. Conducting polyaniline/poly (acrylic acid)/phytic acid multifunctional binders for Si anodes in lithium ion batteries. Ionics 25, 5323–5331 (2019). https://doi.org/10.1007/s11581-019-03122-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03122-1

Keywords

Navigation