Skip to main content
Log in

Transport parameters of charge carriers in PEO-LiTf-based, plasticized, composite, and plasticized-composite electrolytes intended for Li-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Solid polymer electrolytes are a key component in many electrochemical devices such as dye-sensitized solar cells, batteries, and supercapacitors. In this study, three electrolytes based on polyethylene oxide (PEO) host polymer, ethylene carbonate (EC) plasticizer, and Al2O3 filler were investigated. The polymer electrolytes (PEO)9(EC)9(LiCF3SO3)2, (PEO)9(LiCF3SO3)2(Al2O3)0.75, and (PEO)9(EC)9(LiCF3SO3)2(Al2O3)0.75 were characterized by analyzing DC conductivity, the frequency dependence of AC conductivity, and complex dielectric function. The conductivities of the plasticized, composite, and plasticized-composite electrolytes at 26 °C increase from 6.25, 0.009, and 2.96 mS cm-1 to 21.5, 0.12, and 11.4 mS cm-1, respectively, when the temperature increased to 70 °C. For the in-depth analysis of electrolytes, dielectric analysis was used to determine the charge carrier density (n), mobility (μ), and diffusion coefficient (D) using a newly developed method. Further, the investigation extended to study the temperature dependence of n, D, and μ. The study reveals that EC can increase the ionic conductivity by increasing n, and conversely, filler contributes by increasing μ, respectively. At 26 °C, (PEO)9(EC)9(LiCF3SO3)2(Al2O3)0.75 shows D, μ, and n of 3.8×10-11 m2 s-1, 1.5×10-9 m2 V-1 s-1, and 1.3×1027 m-3, respectively. The values obtained for D, μ, and n parameters of the plasticized electrolytes agree with those available for similar electrolytes, while the composite electrolyte showed considerably lower values for n. The complex impedance analysis can be used to determine transport parameters of all the types (plasticized, composite, and plasticized composite) of polymer electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agrawal R, Pandey G (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications. an overview. Journal Of Physics D. Appl Phys 41(22):223001. https://doi.org/10.1088/0022-3727/41/22/223001

    Article  CAS  Google Scholar 

  2. Opitz A, Badami P, Shen L, Vignarooban K, Kannan A (2017) Can Li-Ion batteries be the panacea for automotive applications? Renew Sust Energ Rev 68:685–692. https://doi.org/10.1016/j.rser.2016.10.019

    Article  CAS  Google Scholar 

  3. Jiang Y, Yan X, Ma Z, Mei P, Xiao W, You Q, Zhang Y (2018) Development of the PEO based solid polymer electrolytes for all-solid state lithium ion batteries. Polymers 10(11):1237. https://doi.org/10.3390/polym10111237

    Article  CAS  PubMed Central  Google Scholar 

  4. Ismail Y, Luqman M, Mane R, Greish Y, Pathan H (2019) advances in applications of polymer nanocomposites. Adv Mater Sci Eng 2019:1–2. https://doi.org/10.1155/2019/7136981

    Article  Google Scholar 

  5. Bandara T, DeSilva L, Ratnasekera J, Hettiarachchi K, Wijerathna A, Thakurdesai M et al (2019) High efficiency dye-sensitized solar cell based on a novel gel polymer electrolyte containing RbI and tetrahexylammonium iodide (Hex4NI) salts and multi-layered photoelectrodes of TiO2 nanoparticles. Renew Sust Energ Rev 103:282–290. https://doi.org/10.1016/j.rser.2018.12.052

    Article  CAS  Google Scholar 

  6. Armand M (1994) The history of polymer electrolytes. Solid State Ionics 69(3-4):309–319. https://doi.org/10.1016/0167-2738(94)90419-7

    Article  CAS  Google Scholar 

  7. Fenton D, Parker J, Wright P (1973) Complexes of alkali metal ions with poly (ethylene oxide). Polymer 14(11):589. https://doi.org/10.1016/0032-3861(73)90146-8

    Article  CAS  Google Scholar 

  8. Manuel Stephan A (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42(1):21–42. https://doi.org/10.1016/j.eurpolymj.2005.09.017

    Article  CAS  Google Scholar 

  9. Sharma J, Singh V (2020) Influence of high and low dielectric constant plasticizers on the ion transport properties of PEO: NH4HF2 polymer electrolytes. High Perform Polym 32(2):142–150. https://doi.org/10.1177/0954008319894043

    Article  CAS  Google Scholar 

  10. Nishshanke G, Arof A, Bandara T (2020) Review on mixed cation effect in gel polymer electrolytes for quasi solid-state dye-sensitized solar cells. Ionics 26(8):3685–3704. https://doi.org/10.1007/s11581-020-03668-5

    Article  CAS  Google Scholar 

  11. Majid S, Idris N, Hassan M, Winie T, Khiar A, Arof A (2005) Transport studies on filler-doped chitosan based polymer electrolyte. Ionics 11(5-6):451–455. https://doi.org/10.1007/bf02430265

    Article  CAS  Google Scholar 

  12. Winie T, Arof A, Thomas S (2019) Polymer electrolytes. Wiley-VCH Verlag GmbH & Co. KGaA

    Google Scholar 

  13. Teo L, Buraidah M, Arof A (2020) Polyacrylonitrile-based gel polymer electrolytes for dye-sensitized solar cells: a review. Ionics 26(9):4215–4238. https://doi.org/10.1007/s11581-020-03655-w

    Article  CAS  Google Scholar 

  14. Watanabe M (1988) Estimation of Li+ transport number in polymer electrolytes by the combination of complex impedance and potentiostatic polarization measurements. Solid State Ionics 28-30:911–917. https://doi.org/10.1016/0167-2738(88)90303-7

    Article  Google Scholar 

  15. Watanabe M, Nagano S, Sanui K, Ogata N (1986) Ion conduction mechanism in network polymers from poly(ethylene oxide) and poly(propylene oxide) containing lithium perchlorate. Solid State Ionics 18-19:338–342. https://doi.org/10.1016/0167-2738(86)90137-2

    Article  CAS  Google Scholar 

  16. Hayamizu K, Akiba E, Bando T, Aihara Y (2002) 1H, 7Li, and 19F nuclear magnetic resonance and ionic conductivity studies for liquid electrolytes composed of glymes and polyetheneglycol dimethyl ethers of CH3O(CH2CH2O)nCH3 (n=3–50) doped with LiN(SO2CF3)2. J Chem Phys 117(12):5929–5939. https://doi.org/10.1063/1.1501279

    Article  CAS  Google Scholar 

  17. Kumar A, Madaan M, Arya A, Tanwar S, Sharma A (2020) Ion transport, dielectric, and electrochemical properties of sodium ion-conducting polymer nanocomposite: application in EDLC. J Mater Sci Mater Electron 31(13):10873–10888. https://doi.org/10.1007/s10854-020-03639-6

    Article  CAS  Google Scholar 

  18. Holomb R, Xu W, Markusson H, Johansson P, Jacobsson P (2006) Vibrational spectroscopy and ab initio studies of lithium Bis(oxalato)borate (LiBOB) in different solvents. J Phys Chem A 110(40):11467–11472. https://doi.org/10.1021/jp0626824

    Article  CAS  PubMed  Google Scholar 

  19. Petrowsky M, Frech R (2008) Concentration dependence of ionic transport in dilute organic electrolyte solutions. J Phys Chem 112(28):8285–8290. https://doi.org/10.1021/jp801146k

    Article  CAS  Google Scholar 

  20. Bandara T, Mellander B (2011) Evaluation of mobility, diffusion coefficient and density of charge carriers in ionic liquids and novel electrolytes based on a new model for dielectric response. Ionic Liquids. Theory Properties New Approaches.

  21. Bandara T, Dissanayake M, Albinsson I, Mellander B (2011) Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I using electrical and dielectric measurements. Solid State Ionics 189(1):63–68. https://doi.org/10.1016/j.ssi.2011.03.004

    Article  CAS  Google Scholar 

  22. Coelho R, (1979) Physics of dielectrics for the engineer. Amsterdam, Elsevier Scientific Pub. Co., pp 97–102

  23. Schütt H, Gerdes E (1992) Space-charge relaxation in ionicly conducting oxide glasses. I. Model and frequency response. J Non-Cryst Solids 144:1–13. https://doi.org/10.1016/s0022-3093(05)80377-1

    Article  Google Scholar 

  24. Nguyen T, Breitkopf C (2018) Determination of diffusion coefficients using impedance spectroscopy data. J Electrochem Soc 165(14):E826–E831. https://doi.org/10.1149/2.1151814jes

    Article  CAS  Google Scholar 

  25. Lasia A (2014) Electrochemical impedance spectroscopy and its applications https://doi.org/10.1007/978-1-4614-8933-7

  26. Liu M, Ye C, Peng L, Weng J (2021) Influence of binder on impedance of lithium batteries: a mini-review. J Electr Eng Technol. https://doi.org/10.1007/s42835-021-00936-w

  27. Conder J, Villevieille C, Trabesinger S, Novák P, Gubler L, Bouchet R (2017) Electrochemical impedance spectroscopy of a Li–S battery: Part 1. Influence of the electrode and electrolyte compositions on the impedance of symmetric cells. Electrochim Acta 244:61–68. https://doi.org/10.1016/j.electacta.2017.05.041

    Article  CAS  Google Scholar 

  28. Ahmad A, Saq'an S, Ramadin Y, Zihlif A (2006) The thermoelectrical behavior of PEO films doped with MnCl2 salt. J Thermoplast Compos Mater 19(5):531–544. https://doi.org/10.1177/0892705706063926

    Article  CAS  Google Scholar 

  29. Bandara T, DeSilva L, Gunasekara L, Dehipawala S, Mellander B (2020) Determination of charge carrier transport parameters in a polymer electrolyte intended for Li-ion batteries using electrochemical impedance analysis. J Solid State Electrochem 24(5):1207–1216. https://doi.org/10.1007/s10008-020-04604-3

    Article  CAS  Google Scholar 

  30. Morawetz H (1992) Solid polymer electrolytes—fundamentals and technological applications. J Polym Sci A Polym Chem 30(5):956–957. https://doi.org/10.1002/pola.1992.080300533

    Article  Google Scholar 

  31. Berhaut C, Lemordant D, Porion P, Timperman L, Schmidt G, Anouti M (2019) Ionic association analysis of LiTDI, LiFSI and LiPF6 in EC/DMC for better Li-ion battery performances. RSC Adv 9(8):4599–4608. https://doi.org/10.1039/c8ra08430k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arumugam S, Shi J, Tunstall D, Vincent C (1993) Cation and anion diffusion coefficients in a solid polymer electrolyte measured by pulsed-field-gradient nuclear magnetic resonance. J Phys Condens Matter 5(2):153–160. https://doi.org/10.1088/0953-8984/5/2/003

    Article  CAS  Google Scholar 

  33. Bruce P, Vincent C (1989) Effect of ion association on transport in polymer electrolytes. Faraday Discuss Chem Soc 88:43. https://doi.org/10.1039/dc9898800043

    Article  CAS  Google Scholar 

  34. Kakihana M, Schantz S, Torell L, Stevens J (1990) Dissociated ions and ion-ion interactions in poly(ethylene oxide) based NaCF3SO3 complexes. Solid State Ionics 40-41:641–644. https://doi.org/10.1016/0167-2738(90)90087-8

    Article  CAS  Google Scholar 

  35. Schantz S, Torell L, Stevens J (1991) Ion pairing effects in poly(propylene glycol)–salt complexes as a function of molecular weight and temperature A Raman scattering study using NaCF3SO3 and LiClO4. J Chem Phys 94(10):6862–6867. https://doi.org/10.1063/1.460265

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial assistance from the University of Peradeniya Sri Lanka (Grant No URG/2019/27/S) is acknowledged. The authors gratefully acknowledge the facilities provided by the Department of Physics, Faculty of Science, University of Peradeniya, Sri Lanka.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. W. J. Bandara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandara, T.M.W.J., Gunasekara, L.B.E., Gunathilake, S.M.S. et al. Transport parameters of charge carriers in PEO-LiTf-based, plasticized, composite, and plasticized-composite electrolytes intended for Li-ion batteries. Ionics 28, 2701–2714 (2022). https://doi.org/10.1007/s11581-022-04540-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04540-4

Keywords

Navigation