Skip to main content
Log in

The modified multi-innovation adaptive EKF algorithm for identifying battery SOC

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

For a second-order battery circuit model, a modified multi-innovation adaptive extended Kalman filter (MMI-AEKF) algorithm is investigated to accurately estimate the state of charge (SOC). Firstly, a process/measure noise estimation based adaptive extended Kalman filter (EKF) algorithm is presented to adjust the statistical characteristics of noise online. Then, a multi-innovation extended Kalman filter (MI-AEKF) algorithm is studied by expanding the single innovation into an innovation vector containing present/past innovations to increase the input information. Furthermore, based on the exponential sequence principle, add the attenuation memory factors to weight all the present/past innovations to distinguish different influences. Finally, build the test bench to collect data of constant current experiment for parameter identification and data of the urban dynamometer driving schedule (UDDS) and Los Angeles 92 (LA-92) for algorithm validation. Simulation results show that the investigated algorithm has excellent accuracy and robustness in SOC estimation, and the RMSE is less than 0.1% under the reasonable parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zubi G, Dufo-López R, Carvalho M, Pasaoglu G (2018) The lithium-ion battery: state of the art and future perspectives. Renew Sustain Energy Rev 89:292–308

    Article  Google Scholar 

  2. Liu K, Li K, Peng Q, Zhang C (2019) A brief review on key technologies in the battery management system of electric vehicles. Front Mech Eng 14(1):47–64

    Article  Google Scholar 

  3. Zhang Z, Guo T, Gao M, He Z, Dong Z (2021) Review of SOC estimation methods for electric vehicle Li-ion batteries. J Electron Inf Technol 43(7):1803–1815

    Google Scholar 

  4. Cui Z, Wang L, Li Q, Wang K (2022) A comprehensive review on the state of charge estimation for lithium-ion battery based on neural network. Int J Energy Res 46(5):5423–5440

    Article  CAS  Google Scholar 

  5. Feng X, Chen J, Zhang Z, Miao S, Zhu Q (2021) State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network. Energy 236:121360

    Article  Google Scholar 

  6. Li C, Xiao F, Fan Y, Tian X, Yang G (2021) Joint estimation of the state of charge and the state of health based on deep learning for lithium-ion batteries. Proceedings of the CSEE 41(2):681–692

    CAS  Google Scholar 

  7. Zhao X, Xuan D, Zhao K, Li Z (2020) Elman neural network using ant colony optimization algorithm for estimating of state of charge of lithium-ion battery. J Energy Storage 32:101789

    Article  Google Scholar 

  8. Guo Y, Zhao Z, Huang L (2017) SOC estimation of lithium battery based on improved BP neural network. Energy Procedia 105:4153–4158

    Article  Google Scholar 

  9. Hong J, Wang Z, Chen W, Wang L, Qu C (2020) Online joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehicles. J Energy Storage 30:101459

    Article  Google Scholar 

  10. Ma L, Hu C, Cheng F (2021) State of charge and state of energy estimation for lithium-ion batteries based on a long short-term memory neural network. J Energy Storage 37:102440

    Article  Google Scholar 

  11. Chemali E, Kollmeyer JP, Preindl M, Emadi A (2018) State-of-charge estimation of Li-ion batteries using deep neural networks: a machine learning approach. J Power Sources 400:242–255

    Article  CAS  Google Scholar 

  12. Qian C, Xu B, Chang L, Sun B, Feng Q, Yang D, Ren Y, Wang Z (2021) Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries. Energy 227:120333

    Article  Google Scholar 

  13. Jiao M, Wang D (2021) The Savitzky-Golay filter based bidirectional long short-term memory network for SOC estimation. Int J Energy Res 45(13):19467–19480

    Article  Google Scholar 

  14. Jiao M, Wang D, Qiu J (2020) A GRU-RNN based momentum optimized algorithm for SOC estimation. J Power Sources 459:228051

    Article  CAS  Google Scholar 

  15. Jiao M, Wang D, Yang Y, Liu F (2021) More intelligent and robust estimation of battery state-of-charge with an improved regularized extreme learning machine. Eng Appl Artif Intell 104(2):104407

    Article  Google Scholar 

  16. Jiao M, Yang Y, Wang D, Gong P (2021) The conjugate gradient optimized regularized extreme learning machine for estimating state of charge. Ionics 27(11):4839–4848

    Article  CAS  Google Scholar 

  17. Bartlett A, Marcicki J, Onori S, Rizzoni G, Yang X, Miller T (2016) Electrochemical model-based state of charge and capacity estimation for a composite electrode lithium-ion battery. IEEE Trans Control Syst Technol 24(2):384–399

    Google Scholar 

  18. Lai X, Zheng Y, Sun T (2018) A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries. Electrochim Acta 259:566–577

    Article  CAS  Google Scholar 

  19. Feng Y, Shen J, Ma Z, He Y (2021) Equivalent circuit modeling of sodium-ion batteries. J Energy Storage 43:103233

    Article  Google Scholar 

  20. Du J, Liu Z, Wang Y, Wen C (2016) An adaptive sliding mode observer for lithium-ion battery state of charge and state of health estimation in electric vehicle. Control Eng Pract 54:81–90

    Article  Google Scholar 

  21. Yao J, Ding J, Feng L (2021) Sliding mode based H-infinity filter for SOC estimation of lithium-ion batteries. Ionics 27(12):5147–5157

    Article  CAS  Google Scholar 

  22. Lim K, Bastawrous H, Duong V, See K, Zhang P, Dou S (2016) Fading Kalman filter-based real-time state of charge estimation in LiFePO4 battery-powered electric vehicles. Appl Energy 169:40–48

    Article  Google Scholar 

  23. Fang Y, Xiong R, Wang J (2018) Estimation of lithium-ion battery state of charge for electric vehicles based on dual extended Kalman filter. Energy Procedia 152:574–579

    Article  Google Scholar 

  24. Lu L, Han X, Li J, Hua J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288

    Article  CAS  Google Scholar 

  25. Meng J, Ricco M, Luo G, Swierczynski M, Stroe D, Stroe A, Teodorescu R (2018) An overview and comparison of online implementable SOC estimation methods for lithium-ion battery. IEEE Trans Ind Appl 54:1583–1591

    Article  CAS  Google Scholar 

  26. Ling L, Sun D, Yu X, Huang R (2021) State of charge estimation of lithium-ion batteries based on the probabilistic fusion of two kinds of cubature Kalman filters. J Energy Storage 43:103070

    Article  Google Scholar 

  27. Li Z, Zhang P, Wang Z, Song Q, Rong Y (2017) State of charge estimation for li-ion battery based on extended Kalman filter. Energy Procedia 105:3515–3520

    Article  Google Scholar 

  28. Li W, Yang Y, Wang D (2020) The multi-innovation extended Kalman filter algorithm for battery SOC estimation. Ionics 26(12):6145–6156

    Article  CAS  Google Scholar 

  29. Ye Y, Li Z, Lin J, Wang X (2022) State-of-charge estimation with adaptive extended Kalman filter and extended stochastic gradient algorithm for lithium-ion batteries. J Energy Storage 47:103611

    Article  Google Scholar 

  30. Zhang Z, Jiang L, Zhang L, Huang C (2021) State-of-charge estimation of lithium-ion battery pack by using an adaptive extended Kalman filter for electric vehicles. J Energy Storage 37:102457

    Article  Google Scholar 

  31. Hu C, Youn B, Chung J (2012) A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation. Appl Energy 92:694–704

    Article  Google Scholar 

  32. He Z, Li Y, Sun Y, Zhao S, Lin C, Pan C, Wang L (2021) State-of-charge estimation of lithium ion batteries based on adaptive iterative extended Kalman filter. J Energy Storage 39:102593

    Article  Google Scholar 

  33. Shi N, Chen Z, Niu M, He Z, Wang Y, Cui J (2022) State-of-charge estimation for the lithium-ion battery based on adaptive extended Kalman filter using improved parameter identification. J Energy Storage 45:103518

    Article  Google Scholar 

  34. He H, Qin H, Sun X, Shui Y (2013) Comparison study on the battery SOC estimation with EKF and UKF algorithms. Energies 6:5088–5100

    Article  Google Scholar 

  35. Lin X, Tang Y, Ren J, Wei Y (2021) State of charge estimation with the adaptive unscented Kalman filter based on an accurate equivalent circuit model. J Energy Storage 41:102840

    Article  Google Scholar 

  36. Wang S, Fernandez C, Yu C, Fan Y, Cao W, Stroe D (2020) A novel charged state prediction method of the lithium ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm. J Power Sources 471:228450

    Article  CAS  Google Scholar 

  37. Zhang S, Guo X, Zhang X (2020) An improved adaptive unscented kalman filtering for state of charge online estimation of lithium-ion battery. J Energy Storage 32:101980

    Article  Google Scholar 

  38. Arasaratnam I, Haykin S (2009) Cubature Kalman filters. IEEE Trans Autom Control 54(6):1254–1269

    Article  Google Scholar 

  39. Zhang L, Yang H, Lu H, Zhang S, Cai H, Qian S (2014) Cubature Kalman filtering for relative spacecraft attitude and position estimation. Acta Astronaut 105:254–264

    Article  Google Scholar 

  40. Peng J, Luo J, He H, Lu B (2019) An improved state of charge estimation method based on cubature Kalman filter for lithium-ion batteries. Appl Energy 253:113520

    Article  Google Scholar 

  41. Ding F, Chen T (2007) Performance analysis of multi-innovation gradient type identification methods. Automatica 43(1):1–14

    Article  CAS  Google Scholar 

  42. Ding F, Chen H, Li M (2007) Multi-innovation least squares identification methods based on the auxiliary model for MISO systems. Appl Math Comput 187(2):658–668

    Google Scholar 

  43. Zong T, Li J, Lu G (2021) Auxiliary model-based multi-innovation PSO identification for Wiener-Hammerstein systems with scarce measurements. Eng Appl Artif Intell 106:104470

    Article  Google Scholar 

  44. Wang Y, Tang S, Gu X (2022) Parameter estimation for nonlinear Volterra systems by using the multi-innovation identification theory and tensor decomposition. J Franklin Inst 359(2):1782–1802

    Article  Google Scholar 

  45. Fan Y, Liu X (2021) Data filtering-based multi-innovation forgetting gradient algorithms for input nonlinear FIR-MA systems with piecewise-linear characteristics. J Franklin Inst 358(18):9818–9840

    Article  Google Scholar 

  46. Zhou Z, Wang D, Xu B (2021) A multi-innovation with forgetting factor based EKF-SLAM method for mobile robots. Assem Autom 41(1):71–78

    Article  Google Scholar 

  47. Liu HB, Wang D (2017) Robust state estimation for wireless sensor networks with data-driven communication. Int J Robust Nonlinear Control 27:4622–4632

    Article  Google Scholar 

  48. Liu HB, Wang D (2018) Stability and stabilisation of a class of networked dynamic systems. Int J Syst Sci 49(5):964–973

    Article  Google Scholar 

  49. Zhao L, Liu Z, Ji G (2018) Lithium-ion battery state of charge estimation with model parameters adaptation using H∞ extended Kalman filter. Control Eng Pract 81:114–128

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant 61873138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongqing Wang.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, T., Sheng, J., Fan, Q. et al. The modified multi-innovation adaptive EKF algorithm for identifying battery SOC. Ionics 28, 3877–3891 (2022). https://doi.org/10.1007/s11581-022-04603-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04603-6

Keywords

Navigation