Skip to main content

Advertisement

Log in

Nitrogen-incorporated iron phosphosulfide nanosheets as efficient bifunctional electrocatalysts for energy-saving hydrogen evolution

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Urea-assisted hydrogen evolution is a promising alternative to conventional water splitting for producing hydrogen with reduced energy consumption. Therefore, the development of bifunctional electrocatalysts to be used in urine-mediated electrolyzers for the hydrogen evolution reaction (HER) and urea oxidation reaction (UOR) is required. In this work, nitrogen-doped iron phosphorus trisulfide (FePS3) nanosheets were prepared, which performance surpassed platinum on carbon electrocatalysts at large current densities above 140 mA cm−2, exhibiting excellent HER performance. A low overpotential of 756 mV was observed for UOR to drive a current density of 10 mA cm−2. When configured for hydrogen production, the urea electrolysis cell delivered a current density of 10 mA cm−2 at a cell voltage of 1.26 V, which is about 0.28 V lower than in conventional water electrolysis. The development of FePS3-based materials as bifunctional electrocatalysts provides a new approach enabling energy-saving hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang L, Han L, Liu H, Liu X, Luo J (2017) Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew Chem Int Ed 56:13694–13698

    Article  CAS  Google Scholar 

  2. Liu X, He J, Zhao S, Liu Y, Zhao Z, Luo J, Hu G, Sun X, Ding Y (2018) Self-powered H2 production with bifunctional hydrazine as sole consumable. Nat Commun 9:4365

    Article  Google Scholar 

  3. Ďurovič M, Hnát J, Bouzek K (2021) Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review. J Power Sources 493:229708

    Article  Google Scholar 

  4. Mahmood N, Yao Y, Zhang J-W, Pan L, Zhang X, Zou J-J (2018) Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv Sci 5:1700464

    Article  Google Scholar 

  5. Li T, Luo G, Liu K, Li X, Sun D, Xu L, Li Y, Tang Y (2018) Encapsulation of Ni3Fe nanoparticles in N-doped carbon nanotube–grafted carbon nanofibers as high-efficiency hydrogen evolution electrocatalysts. Adv Funct Mater 28:1805828

    Article  Google Scholar 

  6. Wang Y, Zheng X, Wang D (2022) Design concept for electrocatalysts. Nano Res 15:1730–1752

    Article  CAS  Google Scholar 

  7. Cui Y, Guo X, Zhang J, Li X, Zhu X, Huang W (2022) Di-defects synergy boost electrocatalysis hydrogen evolution over two-dimensional heterojunctions. Nano Res 15:677–684

    Article  CAS  Google Scholar 

  8. Jamesh M-I, Harb M (2021) Tuning the electronic structure of the earth-abundant electrocatalysts for oxygen evolution reaction (OER) to achieve efficient alkaline water splitting–A review. J Energy Chem 56:299–342

    Article  Google Scholar 

  9. Peng X, Hou J, Mi Y, Sun J, Qi G, Qin Y, Zhang S, Qiu Y, Luo J, Liu X (2021) Bifunctional single-atomic Mn sites for energy-efficient hydrogen production. Nanoscale 13:4767–4773

    Article  CAS  Google Scholar 

  10. Lu F, Zhou M, Zhou Y, Zeng X (2017) First-row transition metal-based catalysts for the oxygen evolution reaction under alkaline conditions: basic principles and recent advances. Small 13:1701931

    Article  Google Scholar 

  11. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2015) Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086

    Article  CAS  Google Scholar 

  12. Lu Q, Yu Y, Ma Q, Chen B, Zhang H (2016) 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv Mater 28:1917–1933

    Article  CAS  Google Scholar 

  13. Sun H, Zhang W, Li J-G, Li Z, Ao X, Xue K-H, Ostrikov KK, Tang J, Wang C (2021) Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Appl Catal B: Environ 284:119740

    Article  CAS  Google Scholar 

  14. Ojha K, Farber EM, Burshtein TY, Eisenberg D (2018) A multi-doped electrocatalyst for efficient hydrazine oxidation. Angew Chem Int Ed 57:17168–17172

    Article  CAS  Google Scholar 

  15. Liu Y, Hu B, Wu S, Wang M, Zhang Z, Cui B, He L, Du M (2019) Hierarchical nanocomposite electrocatalyst of bimetallic zeolitic imidazolate framework and MoS2 sheets for non-Pt methanol oxidation and water splitting. Appl Catal B: Environ 258:117970

    Article  CAS  Google Scholar 

  16. Zhu B, Liang Z, Zou R (2020) Designing advanced catalysts for energy conversion based on urea oxidation reaction. Small 16:1906133

    Article  CAS  Google Scholar 

  17. Zhang L, Wang L, Lin H, Liu Y, Ye J, Wen Y, Chen A, Wang L, Ni F, Zhou Z (2019) A lattice-oxygen-involved reaction pathway to boost urea oxidation. Angew Chem Int Ed 18:16820–16825

    Article  Google Scholar 

  18. Zhang J-Y, He T, Wang M, Qi R, Yan Y, Dong Z, Liu H, Wang H, Xia BY (2019) Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array. Nano Energy 60:894–902

    Article  CAS  Google Scholar 

  19. Wang Z, Liu W, Hu Y, Guan M, Xu L, Li H, Bao J, Li H (2020) Cr-doped CoFe layered double hydroxides: Highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea. Appl Catal B: Environ 272:118959

    Article  CAS  Google Scholar 

  20. Zhang Q, Kazim FM, Ma S, Qu K, Li M, Wang Y, Hu H, Cai W, Yang Z (2021) Nitrogen dopants in nickel nanoparticles embedded carbon nanotubes promote overall urea oxidation. Appl Catal B: Environ 280:119436

    Article  CAS  Google Scholar 

  21. Pu Z, Liu T, Amiinu IS, Cheng R, Wang P, Zhang C, Ji P, Hu W, Liu J, Mu S (2020) Transition-metal phosphides: activity origin, energy-related electrocatalysis applications, and synthetic strategies. Adv Funct Mater 30:2004009

    Article  CAS  Google Scholar 

  22. Shi Z, Yang W, Gu Y, Liao T, Sun Z (2020) Metal-nitrogen-doped carbon materials as highly efficient catalysts: progress and rational design. Adv Sci 7:2001069

    Article  CAS  Google Scholar 

  23. Chen Z, Duan X, Wei W, Wang S, Ni B-J (2019) Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J Mater Chem A 7:14971–15005

    Article  CAS  Google Scholar 

  24. Zhang X-Y, Yu W-L, Zhao J, Dong B, Liu C-G, Chai Y-M (2021) Recent development on self-supported transition metal-based catalysts for water electrolysis at large current density. Appl Mater Today 22:100913

    Article  Google Scholar 

  25. Anantharaj S, Aravindan V (2020) Developments and perspectives in 3d transition-metal-based electrocatalysts for neutral and near-neutral water electrolysis. Adv Energy Mater 10:1902666

    Article  CAS  Google Scholar 

  26. Song B, Li K, Yin Y, Wu T, Dang L, Cabán-Acevedo M, Han J, Gao T, Wang X, Zhang Z, Schmidt JR, Xu P, Jin S (2017) Tuning mixed nickel iron phosphosulfide nanosheet electrocatalysts for enhanced hydrogen and oxygen evolution. ACS Catal 7:8549–8557

    Article  CAS  Google Scholar 

  27. Wang S, Xiao B, Shen S, Song K, Lin Z, Wang Z, Chen Y, Zhong W (2020) Cobalt doping of FePS3 promotes intrinsic active sites for the efficient hydrogen evolution reaction. Nanoscale 12:14459–14464

    Article  CAS  Google Scholar 

  28. Chang J, Wang G, Belharsa A, Ge J, Xing W, Yang Y (2020) Stable Fe2P2S6 nanocrystal catalyst for high-efficiency water electrolysis. Small Methods 4:1900632

    Article  CAS  Google Scholar 

  29. Zhu W, Gan W, Muhammad Z, Wang C, Wu C, Liu H, Liu D, Zhang K, He Q, Jiang H, Zheng X, Sun Z, Chen S, Song L (2018) Exfoliation of ultrathin FePS3 layers as a promising electrocatalyst for the oxygen evolution reaction. Chem Commun 54:4481–4484

    Article  CAS  Google Scholar 

  30. Cheng Z, Shifa TA, Wang F, Gao Y, He P, Zhang K, Jiang C, Liu Q, He J (2018) High-yield production of monolayer FePS3 quantum sheets via chemical exfoliation for efficient photocatalytic hydrogen evolution. Adv Mater 30:1707433

    Article  Google Scholar 

  31. Hongzhiwei Technology, Device Studio, Version 2021B, China, 2021. Available online: https://iresearch.net.cn/cloudSoftware (accessed on Feb. 2022)

  32. Blöchl PE (1994) Projector augmented-wave method. Physical review B 24:17953

    Article  Google Scholar 

  33. Huang H, Li F, Xue Q, Zhang Y, Yin S, Chen Y (2019) Salt-Templated construction of ultrathin cobalt doped iron thiophosphite nanosheets toward electrochemical ammonia synthesis. Small 15:1903500

    Article  CAS  Google Scholar 

  34. Liu Z, Zhang C, Liu H, Feng L (2020) Efficient synergism of NiSe2 nanoparticle/NiO nanosheet for energy-relevant water and urea electrocatalysis. Appl Catal B: Environ 276:119165

    Article  CAS  Google Scholar 

  35. Liu H, Peng X, Liu X, Qi G, Luo J (2019) Porous Mn-Doped FeP/Co3 (PO4)2 nanosheets as efficient electrocatalysts for overall water splitting in a wide pH range. Chemsuschem 12:1334–1341

    Article  CAS  Google Scholar 

  36. Liu X, Xi W, Li C, Li X, Shi J, Shen Y, He J, Zhang L, Xie L, Sun X, Wang P, Luo J, Liu LM, Ding Y (2018) Nanoporous Zn-doped Co3O4 sheets with single-unit-cell-wide lateral surfaces for efficient oxygen evolution and water splitting. Nano Energy 44:371–377

    Article  CAS  Google Scholar 

  37. Zhou Q, Shen Z, Zhu C, Li J, Ding Z, Wang P, Pan F, Zhang Z, Ma H, Wang S (2018) Nitrogen-doped CoP electrocatalysts for coupled hydrogen evolution and sulfur generation with low energy consumption. Adv Mater 30:1800140

    Article  Google Scholar 

  38. Liu D, Liu T, Zhang L, Qu F, Du G, Asiri AM, Sun X (2017) High-performance urea electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode. J Mater Chem A 5:3208–3213

    Article  CAS  Google Scholar 

  39. Fan H, Yu H, Zhang Y, Zheng Y, Luo Y, Dai Z, Li B, Zong Y, Yan Q (2017) Fe-doped Ni3C nanodots in N-doped carbon nanosheets for efficient hydrogen-evolution and oxygen-evolution electrocatalysis. Angew Chem Int Ed 56:12566–12570

    Article  CAS  Google Scholar 

  40. Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep 5:13801

    Article  Google Scholar 

  41. Liu H, Peng X, Liu X (2018) Single-atom catalysts for the hydrogen evolution reaction. ChemElectroChem 5:2963–2974

    Article  CAS  Google Scholar 

  42. H Jiang, M Sun, S Wu, B Huang, C Lee, W Zhang (2021) Oxygen‐incorporated NiMoP nanotube arrays as efficient bifunctional electrocatalysts for urea‐assisted energy‐saving hydrogen production in alkaline electrolyte, Adv Funct Mater 2104951

Download references

Acknowledgements

We are grateful for the HZWTECH for providing computation facilities.

Funding

This study was financially supported by the National Natural Science Foundation of China (22075211, 21601136, 51971157, 62005173, and 51621003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Qiu or Xijun Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 552 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Qiu, Y., Zhang, S. et al. Nitrogen-incorporated iron phosphosulfide nanosheets as efficient bifunctional electrocatalysts for energy-saving hydrogen evolution. Ionics 28, 3927–3934 (2022). https://doi.org/10.1007/s11581-022-04634-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04634-z

Keywords

Navigation