Skip to main content
Log in

Ordering results between extreme order statistics in models with dependence defined by Archimedean [survival] copulas

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

Motivated by recent works about stochastic comparisons between extreme order statistics arising from heterogeneous and dependent random variables, where the dependency structure is defined by the family of Archimedean copulas and the marginal distributions follow some specific parametric distributions, in this work, we investigate the case in which the marginal distributions can have arbitrary distribution functions depending on some parameter. Such parameter can be a shape, scale or location parameter, but other kinds of parameters, as frailty, resilience or tilt parameters can be also considered. Hence, the modified proportional hazard rate scale (MPHRS) and the modified proportional reversed hazard rate scale (MPRHRS) models, among others, belong to the wide parametric model studied here. Under this setup, we provide some general results for the usual stochastic order, when the parameter vectors verify the p-larger order or the reciprocally majorization order, generalizing some of the existing results in the literature. Besides this, extreme order statistics arising from the dependent MPHRS and MPRHRS models are compared in the sense of the reversed hazard rate order and the hazard rate order as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arnold, B.C., Balakrishnan, N., Nagaraja, H.N.: A First Course in Order Statistics. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  2. Balakrishnan, N., Barmalzan, G., Haidari, A.: Modified proportional hazard rates and proportional reversed hazard rates models via Marshall-Olkin distribution and some stochastic comparisons. J. Korean Stat. Soc. 47(1), 127–138 (2018)

    Article  MathSciNet  Google Scholar 

  3. Barmalzan, G., Ayat, S.M., Balakrishnan, N., Roozegar, R.: Stochastic comparisons of series and parallel systems with dependent heterogeneous extended exponential components under Archimedean copula. J. Comput. Appl. Math. 380, 112965 (2020)

    Article  MathSciNet  Google Scholar 

  4. Buono, F., Longobardi, M., Szymkowiak, M.: On generalized reversed aging intensity functions. Ric. Mat. (2021)

  5. Cordeiro, G.M., Castro, M.: A new family of generalized distributions. J. Stat. Comput. Simul. 81(7), 883–898 (2011)

    Article  MathSciNet  Google Scholar 

  6. Da, G., Xia, L., Hu, T.: On computing signatures of \(k\)-out-of-\(n\) systems consisting of modules. Methodol. Comput. Appl. Probab. 16, 223–233 (2014)

    Article  MathSciNet  Google Scholar 

  7. Das, S., Kayal, S.: Ordering extremes of exponentiated location-scale models with dependent and heterogeneous random samples. Metrika 83(8), 869–893 (2020)

    Article  MathSciNet  Google Scholar 

  8. Das, S., Kayal, S.: Some ordering results for the Marshall and Olkin’s family of distributions. Commun. Math. Stat. 9, 153–179 (2021)

    Article  MathSciNet  Google Scholar 

  9. Das, S., Kayal, S., Choudhuri, D.: Ordering results on extremes of exponentiated location-scale models. Probab. Eng. Inf. Sci. 35(2), 331–354 (2021)

    Article  MathSciNet  Google Scholar 

  10. Das, S., Kayal, S., Balakrishnan, N.: Orderings of the smallest claim amounts from exponentiated location-scale models. Methodol. Comput. Appl. Probab. 23(3), 971–999 (2021)

    Article  MathSciNet  Google Scholar 

  11. David, H., Nagaraja, H.: Order Statistics, 3rd edn. Wiley, New York (2003)

    Book  Google Scholar 

  12. Durante, F., Foschi, R.: Dependence of exchangeable residual lifetimes subject to failure. Appl. Math. Comput. 235, 502–511 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Hazra, N.K., Kuiti, M.R., Finkelstein, M., Nanda, A.K.: On stochastic comparisons of maximum order statistics from the location-scale family of distributions. J. Multivar. Anal. 160, 31–41 (2017)

    Article  MathSciNet  Google Scholar 

  14. Karamikabir, H., Afshari, M., Alizadeh, M., Hamedani, G.G.: A new extended generalized Gompertz distribution with statistical properties and simulations. Commun. Stat. Theory Methods 50(2), 251–279 (2021)

    Article  MathSciNet  Google Scholar 

  15. Khaledi, B.-L., Kochar, S.: Dispersive ordering among linear combinations of uniform random variables. J. Stat. Plan. Inference 100, 13–21 (2002)

    Article  MathSciNet  Google Scholar 

  16. Kizilaslan, F.: Some reliability characteristics and stochastic ordering of series and parallel systems of bivariate generalized exponential distribution. J. Stat. Comput. Simul. 88(3), 553–574 (2018)

    Article  MathSciNet  Google Scholar 

  17. Kochar, S.C., Torrado, N.: On stochastic comparisons of largest order statistics in the scale model. Commun. Stat. Theory Methods 44, 4132–4143 (2015)

    Article  MathSciNet  Google Scholar 

  18. Kundu, A., Chowdhury, S., Nanda, A.K., Hazra, N.K.: Some results on majorization and their applications. J. Comput. Appl. Math. 301, 161–177 (2016)

    Article  MathSciNet  Google Scholar 

  19. Li, X., Fang, R.: Ordering properties of order statistics from random variables of Archimedean copulas with applications. J. Multivar. Anal. 133, 304–320 (2015)

    Article  MathSciNet  Google Scholar 

  20. Longobardi, M., Pellerey, F.: On the role of dependence in residual lifetimes. Stat. Probab. Lett. 153, 56–64 (2019)

    Article  MathSciNet  Google Scholar 

  21. Makri, F.S., Psillakis, Z.M.: Reliability and importance measures for a general consecutive-type system. Qual. Technol. Quant. Manag. 18(1), 1–19 (2021)

    Article  Google Scholar 

  22. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications. Springer, New York (2011)

    Book  Google Scholar 

  23. Nelsen, R.B.: An Introduction to Copulas. Springer Series in Statistics, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  24. Navarro, J., Pellerey, F., Di Crescenzo, A.: Orderings of coherent systems with randomized dependent components. Eur. J. Oper. Res. 240(1), 127–139 (2015)

    Article  MathSciNet  Google Scholar 

  25. Navarro, J., Torrado, N., del Águila, Y.: Comparisons between largest order statistics from multiple-outlier models with dependence. Methodol. Comput. Appl. Probab. 20, 411–433 (2018)

    Article  MathSciNet  Google Scholar 

  26. Oliveira, P.E., Torrado, N.: On proportional reversed failure rate class. Stat. Pap. 56(4), 999–1013 (2015)

    Article  MathSciNet  Google Scholar 

  27. Pellerey, F., Navarro, J.: Stochastic monotonicity of dependent variables given their sum. Test (2021)

  28. Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer, New York (2007)

    Book  Google Scholar 

  29. Torrado, N., Veerman, J.J.P.: Asymptotic reliability theory of \(k\)-out-of-\(n\) systems. J. Stat. Plan. Inference 142(9), 2646–2655 (2012)

    Article  MathSciNet  Google Scholar 

  30. Torrado, N.: Tail behaviour of consecutive \(2\)-within-\(m\)-out-of-\(n\) systems with nonidentical components. Appl. Math. Model. 39(15), 4586–4592 (2015)

    Article  MathSciNet  Google Scholar 

  31. Torrado, N.: On magnitude orderings between smallest order statistics from heterogeneous beta distributions. J. Math. Anal. Appl. 426(2), 824–838 (2015)

    Article  MathSciNet  Google Scholar 

  32. Torrado, N.: Stochastic comparisons between extreme order statistics from scale models. Statistics 51(6), 1359–1376 (2017)

    Article  MathSciNet  Google Scholar 

  33. Torrado, N.: On allocation policies in systems with dependence structure and random selection of components. J. Comput. Appl. Math. 388, 113274 (2021)

    Article  MathSciNet  Google Scholar 

  34. Torrado, N.: Comparing the reliability of coherent systems with heterogeneous, dependent and distribution-free components. Qual. Technol. Quant. Manag. 18(6), 740–770 (2021)

    Article  Google Scholar 

  35. Torrado, N., Navarro, J.: Ranking the extreme claim amounts in dependent individual risk models. Scand. Actuar. J. 2021(3), 218–247 (2021)

    Article  MathSciNet  Google Scholar 

  36. Torrado, N., Arriaza, A., Navarro, J.: A study on multi-level redundancy allocation in coherent systems formed by modules. Reliab. Eng. Syst. Saf. 213, 107694 (2021)

    Article  Google Scholar 

  37. You, Y., Li, X.: Optimal capital allocations to interdependent actuarial risks. Insur. Math. Econ. 57, 104–113 (2014)

    Article  MathSciNet  Google Scholar 

  38. Zhang, M., Lu, B., Yan, R.: Ordering results of extreme order statistics from dependent and heterogeneous modified proportional (reversed) hazard variables. AIMS Math. 6(1), 584–606 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge anonymous reviewers and Editors for providing valuable comments and suggestions on earlier versions of this manuscript.

Funding

Sangita Das thanks the MHRD, Government of India for financial support. Suchandan Kayal acknowledges the partial financial support for this work under a Grant MTR/2018/000350, SERB, India. Finally, Nuria Torrado is partially supported by Ministerio de Ciencia e Innovación of Spain under Grant PID2019-108079GB-C22/AEI/10.13039/501100011033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuria Torrado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Corollary 3.6

(i) To obtain the desired result, from (3.11) and Theorem 3.1, it is sufficient to show that

$$\begin{aligned} {H_{G}(x;e^{a_i})}=\frac{1-[1-G(x e^{a_i})]^{\lambda }}{1-{{\bar{\alpha }}}[1- G(x e^{a_i})]^{\lambda }} \end{aligned}$$

is increasing and log-concave with respect to \(a_i\), where \(a_i=\log \delta _i\), for \(i=1,\ldots ,n\). After some computations, the partial derivative of the above function with respect to \(a_i\) is

$$\begin{aligned} \frac{\partial {H_{G}(x;e^{a_i})}}{\partial a_i}= & {} \alpha \lambda x e^{a_i} r_{G}(x e^{a_i}) \frac{[1- G(x e^{a_i})]^{\lambda }}{(1-{{\bar{\alpha }}}[1- G(x e^{a_i})]^{\lambda })^{2}}\nonumber \\= & {} {\frac{\lambda x e^{a_i} r_{G}(x e^{a_i})}{1-{{\bar{\alpha }}}[1- G(x e^{a_i})]^{\lambda }}{{{{\bar{H}}}}_{G}(x;e^{a_i})}\ge 0,} \end{aligned}$$
(5.1)

which means that \({ H_{G}(x;e^{a_i})}\) is increasing in \(a_i\), for \(i=1,\ldots ,n\). On the other hand,

$$\begin{aligned} \frac{\partial \log { H_{G}(x;e^{a_i})}}{\partial a_i}= & {} {\frac{\lambda x e^{a_i} r_{G}(x e^{a_i})}{1-[1- G(x e^{a_i})]^{\lambda }}{{{{\bar{H}}}}_{G}(x;e^{a_i})}.} \end{aligned}$$
(5.2)

Now, observe that \({{{\bar{H}}}_{G}(x;e^{a_i})}\) is decreasing in \(a_i\) and, it is easy to verify that if \(ur_{G}(u)\) is decreasing in u. Then, the function

$$\begin{aligned} \frac{\lambda x e^{a_i} r_{G}(x e^{a_i})}{1-[1- G(x e^{a_i})]^{\lambda }} \end{aligned}$$

is also decreasing in \(a_i\). Therefore, (5.2) is decreasing in \(a_i\), that is, \({H}_{G}(x;e^{a_i})\) is log-concave with respect to \(a_i\).

(ii) Again, from (3.11) and Theorem 3.1, it is enough to verify that

$$\begin{aligned} {H_{G}(x;e^{a_i})}=\frac{1-[1- G(t)]^{e^{a_i}}}{1-{{\bar{\alpha }}}[1- G(t)]^{e^{a_i}}} \end{aligned}$$

is increasing and log-concave with respect to \(a_i\), where \(a_i=\log \mu _i\), for \(i=1,\ldots ,n\), and \(t=x \theta \). The partial derivative of the above function with respect to \(a_i\) yields

$$\begin{aligned} \frac{\partial {H_{G}(x;e^{a_i})}}{\partial a_i}= -\frac{\alpha e^{a_i} [1- G(t)]^{e^{a_i}} \log \left( 1-{G}(t)\right) }{(1-{{\bar{\alpha }}}[1- G(t)]^{e^{a_i}})^{2}}\ge 0, \end{aligned}$$
(5.3)

i.e, \({H_{G}(x;e^{a_i})}\) is increasing in \(a_i\), for \(i=1,\ldots ,n\), and further,

$$\begin{aligned} \frac{\partial \log {H_{G}(x;e^{a_i})}}{\partial a_i}= & {} -\frac{\alpha e^{a_i} [1- G(t)]^{e^{a_i}} \log \left( 1-{G}(t)\right) }{(1-{{\bar{\alpha }}}[1- G(t)]^{e^{a_i}})(1-[1- G(t)]^{e^{a_i}})}\nonumber \\= & {} {-\alpha \log \left( 1-{G}(t)\right) \frac{ e^{a_i} [1- G(t)]^{e^{a_i}}}{1-[1- G(t)]^{e^{a_i}}}\cdot \frac{1}{1-{{{\bar{\alpha }}}}[1- G(t)]^{e^{a_i}}}}.\nonumber \\ \end{aligned}$$
(5.4)

Now, from Lemma A.12 in [8], it is known that the function

$$\begin{aligned} \frac{ e^{a_i} [1- G(t)]^{e^{a_i}}}{1-[1- G(t)]^{e^{a_i}}}\end{aligned}$$

is decreasing in \(a_i\). Moreover, it can be easily verified that the function \(1/(1-{{{\bar{\alpha }}}}[1- G(t)]^{e^{a_i}})\) is also decreasing in \(a_i\) when \(0<\alpha <1\). Therefore, (5.4) is a decreasing function in \(a_i\), i.e., \(H_{G}(x;e^{a_i})\) is log-concave in \(a_i\). \(\square \)

Proof of Corollary 3.9

From (3.11) and Remark 3.5, it is required to show that

$$\begin{aligned} { H_{G}(x;e^{a_i})}=\frac{1-[{{\bar{G}}}(t)]^{\lambda }}{1-(1-e^{a_i})[{{{\bar{G}}}}(t)]^{\lambda }} \end{aligned}$$

is monotone and log-concave with respect to \(a_i\), where \(a_i=\log \beta _i\), for \(i=1,\ldots ,n\), and \(t=x \theta \). Differentiating the above function with respect to \(a_i\), we have

$$\begin{aligned} \frac{\partial { H_{ G}(x;e^{a_i})}}{\partial a_i}=- \frac{e^{a_i} [{{{\bar{G}}}}(t)]^{\lambda } (1-[{{\bar{G}}}(t)]^{\lambda })}{(1-(1-e^{a_i})[{{{\bar{G}}}}(t)]^{\lambda })^{2}}=- { H_{ G}(x;e^{a_i})}{{{{\bar{H}}}}_{{{\bar{G}}}}(x;e^{a_i})} \le 0, \end{aligned}$$

i.e., \({H_{G}(x;e^{a_i})} \) is decreasing with respect to \(a_{i}\), for \(i=1,\ldots ,n\). Therefore, it is monotone. On the other hand,

$$\begin{aligned}\frac{\partial \log {H_{G}(x;e^{a_i})}}{\partial a_i}=- {{{{\bar{H}}}}_{{{{\bar{G}}}}}(x;e^{a_i})}, \end{aligned}$$

which is decreasing since the function \({{\bar{H}}}_{G}(x;e^{a_i})\) is increasing in \(a_i\). Hence, \({H_{G}(x;e^{a_i})}\) is log-concave with respect to \(a_i\). \(\square \)

Proof of Corollary 3.13

(i) From (3.11) and Theorem 3.10, it is required to prove that

$$\begin{aligned} { H_{ G}(x;1/{a_i})}=\frac{1-[1- G(x /{a_i})]^{\lambda }}{1-{{\bar{\alpha }}}[1- G(x /{a_i})]^{\lambda }} \end{aligned}$$

is decreasing and log-concave with respect to \(a_i\), where \(a_i=1/{\delta _i}\), for \(i=1,\ldots ,n\). After some standard calculations, the partial derivative of the above function with respect to \(a_i\) is

$$\begin{aligned} \frac{\partial { H_{ G}\left( x;1/{a_i}\right) }}{\partial a_i}= & {} -\frac{\alpha \lambda x}{a^{2}_i} r_{G}\left( {x}/{a_i}\right) \frac{[1- G(x /{a_i})]^{\lambda }}{(1-{{\bar{\alpha }}}[1- G(x/{a_i})]^{\lambda })^{2}}\\= & {} {-\frac{\lambda x r_{G}(x/a_i)}{a_i^2} \frac{{{{\bar{H}}}_{ {{{\bar{G}}}}}(x;1/{a_i})}}{1-{{\bar{\alpha }}}[1- G(x /{a_i})]^{\lambda }}} \le 0, \end{aligned}$$

i.e., \({ H_{ G}\left( x;1/{a_i}\right) }\) is decreasing in \(a_i\), for \(i=1,\ldots ,n\). Further,

$$\begin{aligned} \frac{\partial \log { H_{ G} (x;1/{a_i})}}{\partial a_i}= & {} - \frac{\lambda x r_{G}(x /{a_i})}{a^2_i} \frac{{{\bar{H}}}_{{{{\bar{G}}}}}(x;1/{a_i})}{1-[1- G(x/{a_i})]^{\lambda }}, \end{aligned}$$

which is decreasing in \(a_i\), whenever \(u^2r_{G}(u)\) is decreasing in u, since both functions \({{\bar{H}}}_{G}(x;1/{a_i})\) and \(1/(1-[1- G(x/{a_i})]^{\lambda })\) are increasing in \(a_i\).

(ii) Now, from (3.11) and Remark 3.12, it is sufficient to prove that

$$\begin{aligned} { H_{ G}(x;1/{a_i})}=\frac{1-[ 1- G(t)]^{\lambda }}{1-(1-1/{a_i})[ 1- G(t)]^{\lambda }} \end{aligned}$$
(5.5)

is monotone and log-concave in \(a_i\), where \(a_i=1/\beta _i\), for \(i=1,\ldots ,n\), and \(t=x \theta \). Differentiating the above function with respect to \(a_i\) partially, we get

$$\begin{aligned} \frac{\partial { H_{ G}(x;1/{a_i})}}{\partial a_i}= & {} \frac{ [ 1- G(t)]^{\lambda } (1-[ 1- G(t)]^{\lambda })}{{a^2_i}(1-(1-1/{a_i})[ 1- G(t)]^{\lambda })^{2}}\\= & {} \frac{1}{a_i}{{{\bar{H}}}_{{{\bar{G}}}}(x;1/{a_i})}{ H_{ G}(x;1/{a_i})} \ge 0, \end{aligned}$$

i.e., \({ H_{ G}(x;1/{a_i})}\) is increasing in \(a_i\), for \(i=1,\ldots ,n\), i.e., it is monotone. On the other hand,

$$\begin{aligned} \frac{\partial \log { H_{ G}(x;1/{a_i})}}{\partial a_i}= \frac{1}{a_i}{{{\bar{H}}}_{{{{\bar{G}}}}}(x;1/{a_i})}, \end{aligned}$$

is decreasing in \(a_i\), since

$$\begin{aligned}\frac{\partial ^2 \log { H_{ G}(x;1/{a_i})}}{\partial a_i^2}= -\frac{1}{a_{i}^2}{ {{{\bar{H}}}}_{ {{\bar{G}}}}(x;1/{a_i})}\left( 1+{ H_{ G}(x;1/{a_i})}\right) \le 0. \end{aligned}$$

Therefore, \({ H_{ G}(x;1/{a_i})}\) is log-concave in \(a_i\). \(\square \)

Proof of Corollary 3.18

(i) From (3.17) and Theorem 3.14, it is required to establish that

$$\begin{aligned} {{{{\bar{H}}}}_{{{{\bar{G}}}}}(x;e^{a_i})}=\frac{e^{a_i}[{{\bar{G}}}(t)]^{\lambda }}{1-(1-e^{a_i})[{{{\bar{G}}}}(t)]^{\lambda }} \end{aligned}$$

is increasing and log-concave with respect to \(a_i\), where \(a_i=\log \beta _i\), for \(i=1,\ldots ,n\), and \(t=x \theta \). Differentiating the above function with respect to \(a_i\), we have

$$\begin{aligned} \frac{\partial {{{{\bar{H}}}}_{{{{\bar{G}}}}}(x;e^{a_i})}}{\partial a_i}= \frac{e^{a_i} [{{{\bar{G}}}}(t)]^{\lambda } (1-[{{\bar{G}}}(t)]^{\lambda })}{(1-(1-e^{a_i})[{{{\bar{G}}}}(t)]^{\lambda })^{2}}= { H_{ G}(x;e^{a_i})}{{{{\bar{H}}}}_{{{\bar{G}}}}(x;e^{a_i})} \ge 0, \end{aligned}$$

i.e., \({{{{\bar{H}}}}_{{{{\bar{G}}}}}(x;e^{a_i})}\) is increasing with respect to \(a_{i}\), for \(i=1,\ldots ,n\). On the other hand, we get

$$\begin{aligned} \frac{\partial \log {{{{\bar{H}}}}_{{{\bar{G}}}}(x;e^{a_i})}}{\partial a_i}= { H_{ G}(x;e^{a_i})}. \end{aligned}$$

Now, observe that \({ H_{ G}(x;e^{a_i})}\) is decreasing in \(a_i\) since \({{{{\bar{H}}}}_{{{{\bar{G}}}}}(x;e^{a_i})}\) is increasing in \(a_i\). Hence, \({{{{\bar{H}}}}_{{{\bar{G}}}}(x;e^{a_i})}\) is log-concave in \(a_i\).

(ii) Again, from (3.17) and Theorem 3.14, it is sufficient to establish that

$$\begin{aligned} {{{{\bar{H}}}}_{{{{\bar{G}}}}}(x;e^{a_i})}=\frac{\alpha [{{{\bar{G}}}}(x e^{a_i})]^{\lambda }}{1-{{\bar{\alpha }}}[{{{\bar{G}}}}(x e^{a_i})]^{\lambda }} \end{aligned}$$
(5.6)

is decreasing and log-convex with respect to \(a_i\), where \(a_i=\log \delta _i\), for \(i=1,\ldots ,n\). From (5.1), clearly \({{{{\bar{H}}}}_{{{{\bar{G}}}}}(x;e^{a_i})}\) is decreasing in \(a_i\) and further,

$$\begin{aligned} \frac{\partial \log {{{{\bar{H}}}}_{{{{\bar{G}}}}}(x;e^{a_i})}}{\partial a_i}=- \frac{\lambda x e^{a_i} r_{G}(x e^{a_i})}{1-{{\bar{\alpha }}}[{{\bar{G}}}(x e^{a_i})]^{\lambda }}. \end{aligned}$$

Now, the second order partial derivative of \(\log {{{\bar{H}}}_{{{{\bar{G}}}}}(x;e^{a_i})}\) with respect to \(a_i\) is obtained as

$$\begin{aligned}&\frac{\partial ^2\log {{{{\bar{H}}}}_{{{\bar{G}}}}(x;e^{a_i})}}{\partial a_i^2} \overset{sign}{=}\nonumber \\&\quad -\left( (1-{{\bar{\alpha }}}[{{{\bar{G}}}}(x e^{a_i})]^{\lambda })\frac{\partial \,( x e^{a_i} r_{G}(x e^{a_i}))}{\partial a_i} -{{\bar{\alpha }}}\lambda \left( x e^{a_i} r_{G}(x e^{a_i})\right) ^2 [{{{\bar{G}}}}(x e^{a_i})]^{\lambda } \right) \nonumber \\ \end{aligned}$$
(5.7)

which is non-negative whenever the function \(u r_{G}(u)\) is decreasing in u and \(0<\alpha <1\). Hence, \({{{\bar{H}}}_{{{{\bar{G}}}}}(x;e^{a_i})}\) is log-convex in \(a_i\) under these conditions. \(\square \)

Proof of Corollary 3.20

(i)From (3.17), the same idea than in Remark 3.5 and Theorem 3.14, it is required to show that (5.6) is monotone and log-concave with respect to \(a_i\), where \(a_i=\log \delta _i\), for \(i=1,\ldots ,n\). From the proof of Corollary 3.6(ii), we know that \({{{{\bar{H}}}}_{{{\bar{G}}}}(x;e^{a_i})}\) is decreasing in \(a_i\), so it is monotone. Finally, observe that (5.7) is non-positive when the function \(xr_{G}(x)\) is increasing in x and \(\alpha \ge 1\).

(ii) From (3.17), the same idea than in Remark 3.5 and Theorem 3.14, we need to show that

$$\begin{aligned} {{{{\bar{H}}}}_{{{\bar{G}}}}(x,e^{a_i})}=\frac{\alpha [{{\bar{G}}}(t)]^{e^{a_i}}}{1-{{\bar{\alpha }}}[{{{\bar{G}}}}(t)]^{e^{a_i}}} \end{aligned}$$

is monotone and log-concave with respect to \(a_i\), where \(a_i=\log \mu _i\), for \(i=1,\ldots ,n\), and \(t=x \theta \). From (5.3), it is known that \({{{{\bar{H}}}}_{{{\bar{G}}}}(x;e^{a_i})}\) is decreasing in \(a_i\), i.e., monotone, and

$$\begin{aligned}&\frac{\partial \log {{{{\bar{H}}}}_{{{{\bar{G}}}}}(x;e^{a_i})}}{\partial a_i}\\&\quad = \frac{e^{a_i}\log {{{\bar{G}}}}(t)}{1-{{{\bar{\alpha }}}}[{{\bar{G}}}(t)]^{e^{a_i}}}. \end{aligned}$$

Now, the second order partial derivative of \(\log {{{\bar{H}}}_{{{{\bar{G}}}}}(x;e^{a_i})}\) with respect to \(a_i\) is obtained as

$$\begin{aligned} \frac{\partial ^2\log {{{{\bar{H}}}}_{{{\bar{G}}}}(x;e^{a_i})}}{\partial a_i^2}= e^{a_i}\log {{{\bar{G}}}}(t) \Big (1-{{{\bar{\alpha }}}} [{{{\bar{G}}}}(t)]^{e^{a_i}}+{{{\bar{\alpha }}}} [{{\bar{G}}}(t)]^{e^{a_i}} e^{a_i}\log {{{\bar{G}}}}(t) \Big )\le 0 \end{aligned}$$

when \({{{\bar{\alpha }}}}<0\), i.e., \({{{{\bar{H}}}}_{{{\bar{G}}}}(x;e^{a_i})}\) is log-concave when \(\alpha \ge 1\). \(\square \)

Proof of Corollary 3.24

Now, from (3.17), the same idea than in Remark 3.5 and Theorem 3.22, we need to show that

$$\begin{aligned} { {{\bar{H}}}_{{{{\bar{G}}}}}(x,1/{a_i})}=\frac{(1/a_i)[ {{\bar{G}}}(t)]^{\lambda }}{1-(1-1/{a_i})[ {{{\bar{G}}}}(t)]^{\lambda }} \end{aligned}$$
(5.8)

is monotone and log-concave in \(a_i\), where \(a_i=1/\beta _i\), for \(i=1,\ldots ,n\), and \(t=x \theta \). From the proof of Corollary 3.13 (ii) above, we know that \({{{\bar{H}}}_{{{{\bar{G}}}}}(x;1/{a_i})}\) is decreasing with respect to \(a_i\) since \({ H_{ G}(x;1/{a_i})}\) is increasing, i.e., it is monotone. On the other hand,

$$\begin{aligned} \frac{\partial \log {{{\bar{H}}}_{{{\bar{G}}}}(x;1/{a_i})}}{\partial a_i}=- \frac{1}{a_i}{{H}_{G}(x;1/{a_i})}, \end{aligned}$$

is increasing in \(a_i\), since

$$\begin{aligned}\frac{\partial ^2 \log {{{\bar{H}}}_{{{{\bar{G}}}}}(x;1/{a_i})}}{\partial a_i^2}= \frac{1}{a_{i}^2}{{H}_{G}(x;1/{a_i})}\left( 1+{{{\bar{H}}}_{{{\bar{G}}}}(x;1/{a_i})}\right) \ge 0. \end{aligned}$$

Therefore, \({{{\bar{H}}}_{{{{\bar{G}}}}}(x;1/{a_i})}\) is log-convex with respect to \(a_i\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Kayal, S. & Torrado, N. Ordering results between extreme order statistics in models with dependence defined by Archimedean [survival] copulas. Ricerche mat (2022). https://doi.org/10.1007/s11587-022-00715-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11587-022-00715-3

Keywords

Mathematics Subject Classification

Navigation