Skip to main content
Log in

Novel Insight into the Preparation of Ti-6Al-4V Alloy Through Thermite Reduction Based on the Mass Action Concentration

  • Metallic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Based on the mass action concentration theory, a novel thermodynamic analysis for the raw material ratio in the procedure of preparing Ti−6Al−4V alloy by aluminothermic reduction process is proposed in this paper, which is originated from TiO2, Al particles, and V2O5 as feedstocks, and the relevant equilibrium thermodynamics was calculated through this new method. The results show that the range of aluminum addition coefficient in raw material to experiment should be controlled within 61.5%–100%, which can significantly reduce the number of experimental groups. This method is ready to regulate the matter of excessive aluminum content in reactants for materials preparation, especially for those reactions including elements that are effortless to combine with aluminum to form the corresponding intermetallics or alloys. In addition, it can also be used in general metallurgy or material preparation process to effectively predict the composition and proportion of equilibrium components under certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klein T, Usategui L, Rashkova B, et al. Mechanical Behavior and Related Microstructural Aspects of a Nano-lamellar TiAl Alloy at Elevated Temperatures[J]. Acta Mater., 2017, 128: 440–450

    Article  CAS  Google Scholar 

  2. Nie G, Ding H S, Chen R R, et al. Microstructural Control and Mechanical Properties of Ti-47Al-2Cr-2Nb Alloy by Directional Solidification Electromagnetic Cold Crucible Technique[J]. Mater. Des., 2012, 39: 350–357

    Article  CAS  Google Scholar 

  3. Xu G D, Wang G S. Development of Titanium and Its Industry[J]. Chinese Journal of Rare Metals, 2009, 33(6): 903–912

    Google Scholar 

  4. Froes F H, Friedrich H, Kiese J, et al. Titanium in the Family Automobile: The Cost Challenge[J]. JOM, 2004, 56: 40–44

    Article  CAS  Google Scholar 

  5. Froes F H, Eylon D, Eichelman G E, et al. Developments in Titanium Powder Metallurgy[J]. JOM, 1980, 32: 47–54

    Article  CAS  Google Scholar 

  6. Mohammadhosseini A, Masood S H, Fraser D, et al. Dynamic Compressive Behaviour of Ti-6Al-4V Alloy Processed by Electron Beam Melting Under High Strain Rate Loading[J]. Advances in Manufacturing, 2015, 3: 232–243

    Article  CAS  Google Scholar 

  7. Song Y L, Dou Z H, Zhang T A, et al. Mechanisms of Metal-slag Separation Behavior in Thermite Reduction for Preparation of TiAl Alloy[J]. J. Mater. Eng. Perform., 2021, 30: 9 315–9 325

    Article  CAS  Google Scholar 

  8. Song Y L, Dou Z H, Zhang T A, et al. Research Progress on the Extractive Metallurgy of Titanium and Its Alloys[J]. Miner. Process. Extr. M., 2021, 42 (8): 535–551

    Article  CAS  Google Scholar 

  9. Xie D Y, Zhang K B, Li W W, et al. Self-propagating High-temperature Synthesis of Sm and Zr Co-doped Gd2Ti2O7 Pyrochlore Ceramics as Nuclear Waste Forms[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2021, 36 (2): 196–202

    Article  CAS  Google Scholar 

  10. Song Y L, Dou Z H, Zhang T A, et al. Preparation of TiAl Master Alloy by Metallothermic Reduction[J]. Rare Metal Mat. Eng., 2020, 49 (3): 1 015–1 019

    CAS  Google Scholar 

  11. Hao G, Qian H. Nonequilibrium Thermodynamic Formalism of Nonlinear Chemical Reaction Systems with Waage-Guldberg’s Law of Mass Action[J]. Chemical Physics, 2016, 472(15): 241–248

    Google Scholar 

  12. Zhang J. Calculating Models of Mass Action Concentration for Metallic Melts Ag-In-Sn[J]. Calphad, 2003, 27(1): 9–17

    Article  Google Scholar 

  13. Zhang J. Computational Thermodynamics of Metallurgical Melts and Solutions[M]. Beijing: Metallurgical Industry Press, 2007

    Google Scholar 

  14. Tang H Y, Wu T, Wang J L, et al. Mass Action Concentration Model of CaO-MgO-FeO-Al2O3-SiO2 Slag Systems and Its Application to the Formation Mechanism of MgO·Al2O3 Spinel-type Inclusion in Casing Steel[J]. Metall. Res. Technol., 2015, 114(4): 409

    Article  Google Scholar 

  15. Wu C C, Cheng G G, Tian J. A Thermodynamic Model for Evaluation of Mass Action Concentrations of La2O3-Al2O3-CaF2-CaO-MgO Slags for Electroslag Remelting Based on the Ion and Molecule Coexistence Theory[J]. High Temp. Mater. Processes, 2013, 32(6): 541–550

    Article  CAS  Google Scholar 

  16. Wu C C, Cheng G G, Long H, et al. A Thermodynamic Model for Evaluation of Mass Action Concentrations of Ce2O3-contained Slag Systems Based on the Ion and Molecule Coexistence Theory[J]. High Temp. Mater. Processes, 2013, 32(3): 207–214

    Article  CAS  Google Scholar 

  17. Murray J L, Wriedt H A. The O-Ti (Oxygen-Titanium) System[J]. Bull. Alloy Phase Diagrams, 1987, 8(2): 148–165

    Article  CAS  Google Scholar 

  18. Schuster J C, Palm M. Reassessment of the Binary Aluminum-Titanium Phase Diagram[J]. J. Phase Equilib. Diffus., 2006, 27(3): 255–277

    Article  CAS  Google Scholar 

  19. Murray J L. The Ti-V (Titanium-Vanadium) System[J]. Bull. Alloy Phase Diagrams, 1981, 2(1): 48–55

    Article  Google Scholar 

  20. Murray J L. Al-V (Aluminum-Vanadium)[J]. Bull. Alloy Phase Diagrams, 1989, 10(4): 351–357

    Article  CAS  Google Scholar 

  21. Taylor J R, Dinsdale A T, Hilleit M, et al. A Critical Assessment of Thermodynamic and Phase Diagram Data for the Al-O System[J]. Calphad, 1992, 16(2): 173–179

    Article  CAS  Google Scholar 

  22. Alexander D G, Carlson O N. The V-VO Phase System[J]. Metall. Trans., 1971, 2: 2 805–2 811

    Article  CAS  Google Scholar 

  23. Peng L M, Wang J H, Li H, et al. Synthesis and Microstructural Characterization of Ti-Al3Ti Metal-Intermetallic Laminate (MIL) Composites[J]. Scr. Mater., 2005, 52: 243–248

    Article  CAS  Google Scholar 

  24. Wang C, Verma N, Kwon Y J, et al. A Study on the Transient Inclusion Evolution during Reoxidation of a Fe-Al-Ti-O Melt[J]. ISIJ Int., 2011, 51(3): 375–381

    Article  CAS  Google Scholar 

  25. Song Y L, Dou Z H, Zhang T A, et al. A Novel Continuous and Controllable Method for Fabrication of As-cast TiAl Alloy[J]. J. Alloys Compd., 2019, 789: 266–275

    Article  CAS  Google Scholar 

  26. Zuo Z L, Yu Q B, Liu J X, et al. Effects of CaO on Reduction of Copper Slag by Biomass Based on Ion and Molecule Coexistence Theory and Thermogravimetric Experiments[J]. ISIJ Int., 2017, 57(2): 220–227

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting’an Zhang  (张廷安).

Additional information

Conflict of interest

All authors declare that there are no competing interests.

Funded by the National Natural Science Foundation of China (No. U1908225), the Doctoral Scientific Research Foundation of Liaocheng University (No.318052124)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Dou, Z., Cheng, C. et al. Novel Insight into the Preparation of Ti-6Al-4V Alloy Through Thermite Reduction Based on the Mass Action Concentration. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 38, 652–658 (2023). https://doi.org/10.1007/s11595-023-2741-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-023-2741-1

Key words

Navigation