Skip to main content
Log in

Telmisartan reduced cerebral edema by inhibiting NLRP3 inflammasome in mice with cold brain injury

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

The aim of this study was to investigate the possible beneficial role of telmisartan in cerebral edema after traumatic brain injury (TBI) and the potential mechanisms related to the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) pyrin domain-containing 3 (NLRP3) inflammasome activation. TBI model was established by cold-induced brain injury. Male C57BL/6 mice were randomly assigned into 3, 6, 12, 24, 48 and 72 h survival groups to investigate cerebral edema development with time and received 0, 5, 10, 20 and 40 mg/kg telmisartan by oral gavage, 1 h prior to TBI to determine the efficient anti-edemic dose. The therapeutic window was identified by post-treating 30 min, 1 h, 2 h and 4 h after TBI. Blood-brain barrier (BBB) integrity, the neurological function and histological injury were assessed, at the same time, the mRNA and protein expression levels of NLRP3 inflammasome, IL-1β and IL-18 concentrations in peri-contused brain tissue were measured 24 h post TBI. The results showed that the traumatic cerebral edema occurred from 6 h, reached the peak at 24 h and recovered to the baseline 72 h after TBI. A single oral dose of 5, 10 and 20 mg/kg telmisartan could reduce cerebral edema. Post-treatment up to 2 h effectively limited the edema development. Furthermore, prophylactic administration of telmisartan markedly inhibited BBB impairment, NLRP3, apoptotic speck-containing protein (ASC) and Caspase-1 activation, as well as IL-1β and IL-18 maturation, subsequently improved the neurological outcomes. In conclusion, telmisartan can reduce traumatic cerebral edema by inhibiting the NLRP3 inflammasome-regulated IL-1β and IL-18 accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kimbler DE, Shields J, Yanasak N, et al. Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice. PLoS One, 2012,7(7): e41229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kahle KT, Walcott BP, Simard JM. Continuous hyperosmolar therapy for traumatic brain injury-associated cerebral edema: as good as it gets, or an iatrogenic secondary insult? J Clin Neurosci, 2013,20(1):30–31

    Article  PubMed  Google Scholar 

  3. Zhang B, Wang B, Cao S, et al. Epigallocatechin-3-Gallate (EGCG) attenuates traumatic brain injury by inhibition of edema formation and oxidative stress. Korean J Physiol Pharmacol, 2015,19(6):491–497

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alves JL. Blood-brain barrier and traumatic brain injury. J Neurosci Res, 2014,92(2):141–147

    Article  CAS  PubMed  Google Scholar 

  5. Huang LQ, Zhu GF, Deng YY, et al. Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-a and IL-1β-induced Na-K-Cl Cotransporter up-regulation. J Neuroinflammation, 2014,11(11):102

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ma Q, Chen S, Hu Q, et al. NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage. Ann Neurol, 2014,75(2):209–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu HD, Li W, Chen ZR, et al. Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model. Neurochem Res, 2013,38(10):2072–2083

    Article  CAS  PubMed  Google Scholar 

  8. Fann DY, Lee SY, Manzanero S, et al. Intravenous immunoglobulin suppresses NLRP1 and NLRP3 inflammasome-mediated neuronal death in ischemic stroke. Cell Death Dis, 2013,4:e790

    Article  CAS  PubMed  Google Scholar 

  9. Timaru-Kast R, Luh C, Gotthardt P, et al. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice. PLoS One, 2012,7(8):e43829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abdul-Muneer PM, Chandra N, Haorah J. Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol Neurobiol, 2015,51(3):966–979

    Article  CAS  PubMed  Google Scholar 

  11. Shiozaki T, Hayakata T, Tasaki O, et al. Cerebrospinal fluid concentrations of anti-inflammatory mediators in early-phase severe traumatic brain injury. Shock, 2005,23(5):406–410

    Article  CAS  PubMed  Google Scholar 

  12. Hayakata T, Shiozaki T, Tasaki O, et al. Changes in CSF S100B and cytokine concentrations in early-phase severe traumatic brain injury. Shock, 2004,22(2):102–107

    Article  CAS  PubMed  Google Scholar 

  13. Chiaretti A, Genovese O, Aloe L, et al. Interleukin 1beta and interleukin 6 relationship with paediatric head trauma severity and outcome. Childs Nerv Syst, 2005,21(3):185–193

    Article  PubMed  Google Scholar 

  14. Clausen F, Hånell A, Björk M, et al. Neutralization of interleukin-1beta modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice. Eur J Neurosci, 2009,30(3):385–396

    Article  PubMed  Google Scholar 

  15. Jones NC, Prior MJ, Burden-Teh E, et al. Antagonism of the interleukin-1 receptor following traumatic brain injury in the mouse reduces the number of nitric oxide synthase-2-positive cells and improves anatomical and functional outcomes. Eur J Neurosci, 2005,22(1):72–78

    Article  PubMed  Google Scholar 

  16. Tehranian R, Andell-Jonsson S, Beni SM, et al. Improved recovery and delayed cytokine induction after closed head injury in mice with central overexpression of the secreted isoform of the interleukin-1 receptor antagonist. J Neurotrauma, 2002,19(8):939–951

    Article  PubMed  Google Scholar 

  17. Panahpour H, Nekooeian AA, Dehghani GA. Blockade of central angiotensin II AT1 receptor protects the brain from ischemia/reperfusion injury in normotensive rats. Iran J Med Sci, 2014,39(6):536–542

    PubMed  PubMed Central  Google Scholar 

  18. Villapol S, Balarezo MG, Affram K, et al. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage. Brain, 2015,138(Pt 11):3299–3331

    Article  PubMed  Google Scholar 

  19. Panahpour H, Nekooeian AA, Dehghani GA. Candesartan attenuates ischemic brain edema and protects the blood-brain barrier integrity from ischemia/reperfusion injury in rats. Iran Biomed J, 2014,18(4):232–238

    PubMed  PubMed Central  Google Scholar 

  20. Kono S, Kurata T, Sato K, et al. Neurovascular protection by telmisartan via reducing neuroinflammation in stroke-resistant spontaneously hypertensive rat brain after ischemic stroke. J Stroke Cerebrovasc Dis, 2015,24(3):537–547

    Article  PubMed  Google Scholar 

  21. Jung KH, Chu K, Lee ST, et al. Blockade of AT1 receptor reduces apoptosis, inflammation, and oxidative stress in normotensive rats with intracerebral hemorrhage. J Pharmacol Exp Ther, 2007,322(3):1051–1058

    Article  CAS  PubMed  Google Scholar 

  22. Garrido-Gil P, Joglar B, Rodriguez-Perez AI, et al. Involvement of PPAR-κ in the neuroprotective and anti-inflammatory effects of angiotensin type 1 receptor inhibition: effects of the receptor antagonist telmisartan and receptor deletion in a mouse MPTP model of Parkinson's disease. J Neuronflammation, 2012,9:38

    Article  CAS  Google Scholar 

  23. Pang T, Wang J, Benicky J, et al. Telmisartan directly ameliorates the neuronal inflammatory response to IL-1β partly through the JNK/c-Jun and NADPH oxidase pathways. J Neuroinflammation, 2012,9:102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang J, Pang T, Hafko R, et al. Telmisartan ameliorates glutamate-induced neurotoxicity: roles of AT(1) receptor blockade and PPAR-κ activation. Neuropharmacology, 2014,79:249–261

    Article  CAS  PubMed  Google Scholar 

  25. Morita-Fujimura Y, Fujimura M, Kawase M, et al. Early decrease in apurinic/apyrimidinic endonuclease is followed by DNA fragmentation after cold injury-induced brain trauma in mice. Neuroscience, 1999,93(4):1465–1473

    Article  CAS  PubMed  Google Scholar 

  26. Zeynalov E, Jones SM, Seo JW, et al. Arginine-vasopressin receptor blocker conivaptan reduces brain edema and blood-brain barrier disruption after experimental stroke in mice. PLoS One, 2015,10(8):e0136121

    Article  PubMed  PubMed Central  Google Scholar 

  27. Timaru-Kast R, Wyschkon S, Luh C, et al. Delayed inhibition of angiotensin II receptor type 1 reduces secondary brain damage and improves functional recovery after experimental brain trauma. Crit Care Med, 2012,40(3):935–944

    Article  CAS  PubMed  Google Scholar 

  28. Hu X, Li P, Guo Y, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke, 2012,43(11): 3063–3070

    Article  CAS  PubMed  Google Scholar 

  29. Michinaga S, Koyama Y. Pathogenesis of brain edema and investigation into anti-edema drugs. Int J Mol Sci, 2015,16(5):9949–9975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gohlke P, Weiss S, Jansen A, et al. AT1 receptor antagonist telmisartan administered peripherally inhibits central responses to angiotensin II in conscious rats. J Pharmacol Exp Ther, 2001,298(1):62–70

    CAS  PubMed  Google Scholar 

  31. Billecke SS, Marcovitz PA. Long-term safety and efficacy of telmisartan/amlodipine single pill combination in the treatment of hypertension. Vasc Health Risk Manag, 2013,9:95–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pushpa VH, Shetty KP, Suresha RN, et al. Evaluation and comparison of anticonvulsant activity of telmisartan and olmesartan in experimentally induced animal models of epilepsy. J Clin Diagn Res, 2014,8(10):HC08–11

    Google Scholar 

  33. Yang Z, Zhong L, Xian R, et al. MicroRNA-223 regulates inflammation and brain injury via feedback to NLRP3 inflammasome after intracerebral hemorrhage. Mol Immunol, 2015,65(2):267–276

    Article  CAS  PubMed  Google Scholar 

  34. Tan CC, Zhang JG, Tan MS, et al. NLRP1 inflammasome is activated in patients with medial temporal lobe epilepsy and contributes to neuronal pyroptosis in amygdala kindling-induced rat model. J Neuroinflammation, 2015,12:18

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kaushal V, Dye R, Pakavathkumar P, et al. Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated Caspase-6 activation. Cell Death Differ, 2015,22(10):1676–1686

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-ke Mao  (毛卫克).

Additional information

This project was supported by grants from the National Natural Science Foundation of China (No. 81270239) and the Natural Science Foundation of Hubei Province of China (No. 2014CFB200).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Hu, Cc., Zhang, Yl. et al. Telmisartan reduced cerebral edema by inhibiting NLRP3 inflammasome in mice with cold brain injury. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 36, 576–583 (2016). https://doi.org/10.1007/s11596-016-1628-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-016-1628-1

Keywords

Navigation