Skip to main content

Advertisement

Log in

Near-surface geophysical characterization of gully erosion hazard-prone area in Calabar, southern Nigeria

  • Research Article - Applied Geophysics
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The electrical resistivity, i.e. electrical resistivity tomography (ERT) and direct current-resistivity sounding (DC-ERS), and ground penetrating radar (GPR) methods were deployed to assess a gully erosion site in Bacoco area of Calabar, Nigeria. The study aims to assess the mechanism and dynamics of the gully erosion conditions in the area based on shallow lithostratigraphic evaluations. The results revealed good contrast in the operative properties (i.e. electrical resistivity and dielectric permittivity) between competent and weak zones along the profiles close to the gully head. The joint interpretations provided reliable shallow subsurface models and lithologies that consist predominantly of lateritic top cover and sands. However, the ERT model delineates the contrast between lithologies and demarcates the weak zones from the relatively competent zones, in contrast to the responses generated by the GPR technique. This joint interpretation approach minimizes the uncertainty due to the non-uniqueness problems common to the geophysical technique. Also, the geophysical interpretations were constrained using lithologic information from the gully walls and one-dimensional (1-D) DC-ERS inverted model to provide additional validity. Our findings suggest the influence of structural control on gully formation and demonstrate its contribution to the complex interactions with other drivers, such as seepages through porous media and high-energy runoff due to intense rainfall. The rapid, non-invasive and environmentally friendly characteristics of ERT and GPR techniques favour their applicability in assessing shallow subsurface environmental problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdulfatai IA, Okunlola AI, Akande WG, Momoh LO, Ibrahim KO (2014) Review of gully erosion in Nigeria: causes, impacts and possible solutions.

  • Abidin MHZ, Saad R, Ahmad F, Wijeyesekera DC, Baharuddin MFT (2014) Correlation analysis between field electrical resistivity value (ERV) and basic geotechnical properties (BGP). Soil Mech Found Eng 51(3):117–125

    Google Scholar 

  • Akpan AE, Ebong ED, Emeka CN (2015) Exploratory assessment of groundwater vulnerability to pollution in Abi, southeastern Nigeria, using geophysical and geological techniques. Environ Monit Assess 187(4):1–18

    Google Scholar 

  • Akpan AE, Ekwok SE, Ebong ED (2016) Seasonal reversals in groundwater flow direction and its role in the recurrent Agwagune landslide problem: a geophysical and geological appraisal. Environ Earth Sci 75(5):1–17

    CAS  Google Scholar 

  • Akpan AE, Ekwok SE, Ebong ED, George AM, Okwueze EE (2018) Coupled geophysical characterization of shallow fluvio-clastic sediments in Agwagune, southeastern Nigeria. J Afr Earth Sc 143:67–78

    Google Scholar 

  • Allen PM, Arnold JG, Auguste L, White J, Dunbar J (2018) Application of a simple headcut advance model for gullies. Earth Surf Proc Land 43(1):202–217

    ADS  Google Scholar 

  • Bernatek-Jakiel A, Kondracka M (2016) Combining geomorphological mapping and near surface geophysics (GPR and ERT) to study piping systems. Geomorphology 274:193–209

    ADS  Google Scholar 

  • Bradford JM, Piest RF (2020) Erosional development of valley-bottom gullies in the upper midwestern United States. In: Thresholds in geomorphology. Routledge, pp 75–101

  • Brandolini P, Pepe G, Capolongo D, Cappadonia C, Cevasco A, Conoscenti C, Marsico A, Vergari F, Del Monte M (2018) Hillslope degradation in representative Italian areas: Just soil erosion risk or opportunity for development? Land Degrad Dev 29(9):3050–3068

    Google Scholar 

  • Brice JB (1966) Erosion and deposition in the loess-mantled Great plains, Medecine creek drainage basin, Nebraska. U.S. Geol Surv Prof Peper 352H:235–339

    Google Scholar 

  • Burian L, Šujan M, Stankoviansky M, Šilhavý J, Okai A (2017) Dependence of gully networks on faults and lineaments networks, case study from Hronska Pahorkatina Hill Land. Open Geosci 9(1):101–113

    Google Scholar 

  • Capozzoli L, Giampaolo V, Martino GD, Gomaa MM, Rizzo E (2022) Geoelectrical measurements to monitor a hydrocarbon leakage in the aquifer: simulation experiment in the lab. Geosci 12(10):360

    ADS  CAS  Google Scholar 

  • Carrière SD, Chalikakis K, Sénéchal G, Danquigny C, Emblanch C (2013) Combining electrical resistivity tomography and ground penetrating radar to study geological structuring of karst unsaturated zone. J Appl Geophys 94:31–41

    Google Scholar 

  • Chambers JE, Wilkinson PB, Kuras O, Ford JR, Gunn DA, Meldrum PI, Pennington CVL, Weller AL, Hobbs PRN, Ogilvy RD (2011) Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin. UK Geomorphol 125(4):472–484

    ADS  Google Scholar 

  • Coutinho JV, Porsani JL, Elis VR, Santos VRN, Ustra AT, Wendland E (2020) Applications of geophysical techniques to improve a groundwater conceptual model in an outcrop area of the Guarani aquifer system. Brazil Environ Earth Sci 79(18):1–11

    Google Scholar 

  • Davis JL, Annan AP (1989) Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy 1. Geophys Prospect 37(5):531–551

    ADS  Google Scholar 

  • Diallo MC, Cheng LZ, Rosa E, Gunther C, Chouteau M (2019) Integrated GPR and ERT data interpretation for bedrock identification at Cléricy, Québec, Canada. Eng Geol 248:230–241

    Google Scholar 

  • Ebong ED, Akpan AE, Onwuegbuche AA (2014) Estimation of geohydraulic parameters from fractured shales and sandstone aquifers of Abi (Nigeria) using electrical resistivity and hydrogeologic measurements. J Afr Earth Sc 96:99–109

    CAS  Google Scholar 

  • Ebong ED, Akpan AE, Emeka CN, Urang JG (2017) Groundwater quality assessment using geoelectrical and geochemical approaches: case study of Abi area, southeastern Nigeria. Appl Water Sci 7(5):2463–2478

    ADS  CAS  Google Scholar 

  • Ebong ED, Abong AA, Ulem EB, Ebong LA (2021a) Geoelectrical resistivity and geological characterization of hydrostructures for groundwater resource appraisal in the Obudu Plateau, Southeastern Nigeria. Nat Resour Res 30(3):2103–2117

    CAS  Google Scholar 

  • Ebong ED, George AM, Ekwok SE, Akpan AE, Asfahani J (2021b) 2D electrical resistivity inversion and ground penetrating radar investigation of near surface cave in New Netim area, southeastern Nigeria. Acta Geod Geoph 56(4):765–780

    ADS  Google Scholar 

  • Edet AE, Okereke CS (2002) Delineation of shallow groundwater aquifers in the coastal plain sands of Calabar area (Southern Nigeria) using surface resistivity and hydrogeological data. J Afr Earth Sc 35(3):433–443

    Google Scholar 

  • Edet AE, Worden RH (2009) Monitoring of the physical parameters and evaluation of the chemical composition of river and groundwater in Calabar (Southeastern Nigeria). Environ Monit Assess 157(1):243–258

    CAS  PubMed  Google Scholar 

  • Egboka BCE, Nwankwor GI, Orajaka IP (1990) Implications of palaeo-and neotectonics in gully erosion-prone areas of southeastern Nigeria. Nat Hazards 3(3):219–231

    Google Scholar 

  • Ekwok SE, Akpan AE, Kudamnya EA, Ebong ED (2020) Assessment of groundwater potential using geophysical data: a case study in parts of Cross River State, south-eastern Nigeria. Appl Water Sci 10(6):1–17

    Google Scholar 

  • El-Qady G, Hafez M, Abdalla MA, Ushijima K (2005) Imaging subsurface cavities using geoelectric tomography and ground-penetrating radar. J Cave Karst Stud 67(3):174–181

    Google Scholar 

  • Enabor EE, Sagau VO (1988) Ecological disasters in Nigeria: soil erosion (an introduction). In: Sagamu VO, Enabor EE, Ofomata GEK, Ologe KO, Oyebande L (eds) Ecological disasters in nigeria: soil erosion. Federal Ministry of Science and Technology, Lagos

    Google Scholar 

  • Fehdi C, Baali F, Boubaya D, Rouabhia A (2011) Detection of sinkholes using 2D electrical resistivity imaging in the Cheria Basin (north–east of Algeria). Arab J Geosci 4(1):181–187

    CAS  Google Scholar 

  • Fernández Águila J, McDonnell M, Flynn R, Ruffell A, Benner E, Etsias G, et al. (2020). Application of electrical resistivity tomography and ground penetrating radar to assess salinity in a coastal aquifer with tidally-driven saline recirculation cell. In: EGU general assembly conference abstracts, p 18138

  • Fikos I, Vargemezis G, Zlotnicki J, Puertollano JR, Alanis PB, Pigtain RC, Villacorte E, Malipot GA, Sasai Y (2012) Electrical resistivity tomography study of Taal volcano hydrothermal system, Philippines. Bullet Volcanol 74(8):1821–1831

    ADS  Google Scholar 

  • Flores-Cervantes JH, Istanbulluoglu E, Bras RL (2006) Development of gullies on the landscape: a model of headcut retreat resulting from plunge pool erosion. J Geophys Res Earth Surf. https://doi.org/10.1029/2004JF000226

    Article  Google Scholar 

  • Furman A, Ferré TP, Warrick AW (2003) A sensitivity analysis of electrical resistivity tomography array types using analytical element modelling. Vadose Zone J 2(3):416–423

    Google Scholar 

  • Gao Q, Shang Y, Hasan M, Jin W, Yang P (2018) Evaluation of a weathered rock aquifer using ERT method in South Guangdong. China Water 10(3):293

    Google Scholar 

  • García-Ruiz JM, Beguería S, Lana-Renault N, Nadal-Romero E, Cerdà A (2017) Ongoing and emerging questions in water erosion studies. Land Degrad Dev 28(1):5–21

    Google Scholar 

  • Gelis C, Noble M, Cabrera J, Penz S, Chauris H, Cushing EM (2016) Ability of high-resolution resistivity tomography to detect fault and fracture zones: application to the Tournemire experimental platform, France. Pure Appl Geophys 173:573–589

    ADS  Google Scholar 

  • Gołębiowski T, Jarosińska E (2019) Application of GPR and ERT methods for recognizing of gypsum deposits in urban areas. Acta Geophys 67(6):2015–2030

    ADS  Google Scholar 

  • Golosov V, Yermolaev O, Rysin I, Vanmaercke M, Medvedeva R, Zaytseva M (2018) Mapping and spatial-temporal assessment of gully density in the Middle Volga region, Russia. Earth Surf Process Landf 43(13):2818–2834

    ADS  Google Scholar 

  • Gómez-Ortiz D, Martín-Velázquez S, Martín-Crespo T, Márquez A, Lillo J, López I, Carreño F, Martín-González F, Herrera R, De Pablo MA (2007) Joint application of ground penetrating radar and electrical resistivity imaging to investigate volcanic materials and structures in Tenerife (Canary Islands, Spain). J Appl Geophys 62(3):287–300

    Google Scholar 

  • Goudie A (1990) The human impact on the natural environment, 3rd edn. MIT Press, Cambridge, MA, p 388

    Google Scholar 

  • Graf WL (1983) Downstream changes in stream power in the Henry Mountains, Utah. Ann Assoc Am Geogr 73(3):373–387

    MathSciNet  Google Scholar 

  • Hagrey SA, Müller C (2000) GPR-study of pore water content and salinity in sand. Geophys Prospect 48:63–85

    ADS  Google Scholar 

  • Hasan M, Shang YJ, Jin WJ, Akhter G (2019) Investigation of fractured rock aquifer in South China using electrical resistivity tomography and self-potential methods. J Mt Sci 16(4):850–869

    Google Scholar 

  • Igbokwe JI, Akinyede JO, Dang B, Alaga T, Ono MN, Nnodu VC, Anike LO (2008) Mapping and monitoring of the impact of gully erosion in Southeastern Nigeria with satellite remote sensing and Geographic Information System. Int Archiv Photogramm Remote Sens Spat Inf Sci 37:865–872

    Google Scholar 

  • Igwe PU, Onuigbo AA, Chinedu OC, Ezeaku II, Muoneke MM (2017) Soil erosion: a review of models and applications. Int J Adv Eng Res Sci 4(12):237341

    Google Scholar 

  • Igwe O, John UI, Solomon O, Obinna O (2020) GIS-based gully erosion susceptibility modeling, adapting bivariate statistical method and AHP approach in Gombe town and environs Northeast Nigeria. Geoenviron Disasters 7(1):1–16

    Google Scholar 

  • Iloeje NP (2001) A new geography of Nigeria. Longman Publishers, Ibadan

    Google Scholar 

  • Ireland HA, Sharpe CFS, Eargle DH (1939) Principles of gully erosion in the Piedmont of South Carolina U.S. Department of Agriculture. Techn Bull 63:143

    Google Scholar 

  • Jain PK, Husain T (2021) Impact of soil erosion on agriculture. Int J Mod Agric 10(2):2053–2060

    Google Scholar 

  • Kampf SK, Faulconer J, Shaw JR, Lefsky M, Wagenbrenner JW, Cooper DJ (2018) Rainfall thresholds for flow generation in desert ephemeral streams. Water Resour Res 54(12):9935–9950

    ADS  Google Scholar 

  • Knox JC (1972) Valley alluviation in southwestern Wisconsin. Ann Assoc Am Geogr 62(3):401–410

    Google Scholar 

  • Kumar SV, Dhakate R, Amarender B, Sankaran S (2016) Application of ERT and GPR for demarcating the saline water intrusion in coastal aquifers of Southern India. Environ Earth Sci 75(5):1–17

    Google Scholar 

  • Láznička Z (1957) Gully erosion in valley of Jihlava near Ivančice. Works of CSAS 393–421

  • le Roux J, van der Waal B (2020) Gully erosion susceptibility modelling to support avoided degradation planning. S Afr Geogr J 102(3):406–420

    Google Scholar 

  • Lebourg T, Binet S, Tric E, Jomard H, El Bedoui S (2005) Geophysical survey to estimate the 3D sliding surface and the 4D evolution of the water pressure on part of a deep seated landslide. Terra Nova 17(5):399–406

    ADS  CAS  Google Scholar 

  • Liao Q, Deng Y, Shi X, Sun Y, Duan W, Wu J (2018) Delineation of contaminant plume for an inorganic contaminated site using electrical resistivity tomography: comparison with direct-push technique. Environ Monit Assess 190(4):1–17

    CAS  Google Scholar 

  • Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method1. Geophys Prospect 44(1):131–152

    ADS  Google Scholar 

  • Luo Y, Wei J, Tang Q, Gan F, Li J (2022) Water seepage and retention in purple soil bunds on sloping farmland in the Three Gorges Reservoir area, China. Land Degrad Devel 30:1410

    Google Scholar 

  • Łyskowski M, Mazurek E, Zitęk J (2014) Ground penerating radar investigation of limestone karst at the Odstrzelona cave in Kowala, Świętokrzyskie mountains, Poland. J Cave Karst Stud 76(3)

  • McCloskey GL, Wasson RJ, Boggs GS, Douglas M (2016) Timing and causes of gully erosion in the riparian zone of the semi-arid tropical Victoria River, Australia: Management implications. Geomorphology 266:96–104

    ADS  Google Scholar 

  • McIvor I, Youjun H, Daoping L, Eyles G, Pu Z (2017) Agroforestry: conservation trees and erosion prevention.

  • Melouah O, Hichem Z (2021) Utility of forward and inverse modeling in 2D electric tomography for hydrogeologic studies. Appl Water Sci 11(2):1–10

    Google Scholar 

  • Melouah O, Zerrouki H, Lopez Steinmetz RL (2020) Characterization of processes and mechanisms controlling ground water salinization in the Algerian Sahara. Arab J Geosci 13(18):1–31

    Google Scholar 

  • Neal A (2004) Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth Sci Rev 66(3–4):261–330

    ADS  Google Scholar 

  • Ocheli A, Ogbe OB, Aigbadon GO (2021) Geology and geotechnical investigations of part of the Anambra Basin, Southeastern Nigeria: implication for gully erosion hazards. Environ Syst Res 10(1):1–16

    Google Scholar 

  • Okorafor OO, Akinbile CO, Adeyemo AJ (2017) Soil erosion in south eastern Nigeria: a review. Sci Res J 5(6):30–37

    Google Scholar 

  • Olabode OP, Adeniji A (2022) Application of electrical resistivity in evaluating a section of road conditions—a case study in Ifaki-Oye-Ikole Ekiti Highway, Nigeria. Arab J Geosci 15(12):1–9

    Google Scholar 

  • Ortega-Ramírez J, Bano M, Cordero-Arce MT, Villa-Alvarado LA, Fraga CC (2020) Application of non-invasive geophysical methods (GPR and ERT) to locate the ancient foundations of the first cathedral of Puebla, Mexico. A case study. J Appl Geophys 174:103958

    Google Scholar 

  • Petronis MS, Awdankiewicz M, Valenta J, Rapprich V, Zebrowski JP, Karim E (2021) Eruptive and magma feeding system evolution of Sośnica Hill Volcano (Lower Silesia, SW Poland) revealed from Volcanological, Geophysical, and Rock Magnetic Data. J Volcanol Geoth Res 419:107367

    CAS  Google Scholar 

  • Piest RF, Bradford JM, Spomer RG (1975) Mechanisms of erosion and sediment movement from gullies. In Present and prospective technology for predicting sediment yields and sources, pp 162–176

  • Poesen J, Nachtergaele J, Verstraeten G, Valentin C (2003) Gully erosion and environmental change: importance and research needs. CATENA 50(2–4):91–133

    Google Scholar 

  • Pulley S, Ellery WN, Lagesse JV, Schlegel PK, McNamara SJ (2018) Gully erosion as a mechanism for wetland formation: an examination of two contrasting landscapes. Land Degrad Dev 29(6):1756–1767

    Google Scholar 

  • Ramos-Scharrón CE, LaFevor MC (2016) The role of unpaved roads as active source areas of precipitation excess in small watersheds drained by ephemeral streams in the Northeastern Caribbean. J Hydrol 533:168–179

    Google Scholar 

  • Reijers TJA, Petters SW (1987) Depositional environments and diagenesis of Albian carbonates on the Calabar Flank, SE Nigeria. J Pet Geol 10(3):283–294

    CAS  Google Scholar 

  • Reppert PM, Morgan FD, Toksöz MN (2000) Dielectric constant determination using ground-penetrating radar reflection coefficients. J Appl Geophys 43(2–4):189–197

    Google Scholar 

  • Rizzo E, Colella A, Lapenna V, Piscitelli S (2004) High-resolution images of the fault-controlled High Agri Valley basin (Southern Italy) with deep and shallow electrical resistivity tomographies. Phys Chem Earth Parts a/b/c 29(4–9):321–327

    ADS  Google Scholar 

  • Sasaki Y (1992) Resolution of resistivity tomography inferred from numerical SIMULATION1. Geophys Prospect 40(4):453–463

    ADS  Google Scholar 

  • Scheingross JS, Lamb MP (2017) A mechanistic model of waterfall plunge pool erosion into bedrock. J Geophys Res Earth Surf 122(11):2079–2104

    ADS  Google Scholar 

  • Singh M, Hartsch K (2019) Basics of soil erosion. In: Watershed hydrology, management and modeling. CRC Press, pp 1–61

  • Tan SMA, Tonnizam ME, Saad R, Dan MM, Nordiana MM, Hazreek ZAM, Madun A (2018) Correlation of resistivity value with geotechnical N-value of sedimentary area in Nusajaya, Johor, Malaysia. J Phys Conf Ser 995(1):012079

    Google Scholar 

  • Tao M, Chen X, Cheng Q, Binley A (2022) Evaluating the joint use of GPR and ERT on mapping shallow subsurface features of karst critical zone in southwest China. Vadose Zone J 21(1):e20172

    CAS  Google Scholar 

  • Vander Velpen BPA (1988) RESIST software version 1.0. M. Sc research project. ITC, Delft, Netherlands. Copyright© 2004, ITC. IT-RSG/DSG

  • Wei Y, Liu Z et al (2021) Can Benggang be regarded as gully erosion? CATENA 207:105648

    Google Scholar 

  • Zajícová K, Chuman T (2019) Application of ground penetrating radar methods in soil studies: a review. Geoderma 343:116–129

    ADS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the Co-Editor-in-Chief, Prof. Gabriela Fernández Viejo and the two anonymous reviewers for painstakingly reviewing our manuscript. Their constructive comments and contributions have greatly improved the quality of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebong Dickson Ebong.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Edited by Prof. Gabriela Fernández Viejo (CO-EDITOR-IN-CHIEF).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebong, E.D., Urang, J.G., Melouah, O. et al. Near-surface geophysical characterization of gully erosion hazard-prone area in Calabar, southern Nigeria. Acta Geophys. 72, 85–96 (2024). https://doi.org/10.1007/s11600-023-01103-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-023-01103-7

Keywords

Navigation